SUBSCRIBE

碳水化合物tanshuihuahewu

β-葡聚糖

时间:2020-12-16 20:19 阅读:1143 来源:朴诺健康研究院

β-葡聚糖

β葡聚糖的功能

β葡聚糖是一种纤维形式的聚糖(多聚糖),从贝克酵母、燕麦和大麦纤维和许多医用蘑菇的细胞壁中分解而来。在它们的天然成分中,酵母和蘑菇含有一种β-1,3-葡聚糖和β-1,6-葡聚糖的混合体。燕麦和大麦则包含有β-1,3-葡聚糖和β-1,4葡聚糖的混合体。除了纯化的β-1,3-葡聚糖,市场上可以看到从酵母中得来的列有β-1,3葡聚糖/1,6-葡聚糖和从燕麦中得来的β-1,3-葡聚糖/1,4-葡聚糖。类似的特性还可体现在从燕麦、酵母和蘑菇中得来的富含β-葡聚糖的提取物和纯化β葡聚糖。这两种主要的β葡聚糖可用于增强免疫力和降低血胆固醇水平。大量的试管试验和动物试验表明β葡聚糖可以激活白细胞[1 2 3 4 5]。实际上,从1960年开始已有大量的关于β葡聚糖的研究[6]。这些研究指出β-1,3-葡聚糖对于激活白细胞中的巨噬细胞和中性粒细胞有很强的作用。这些细胞作为人体免疫系统的第一防御线能有效的抵御外来侵入。葡聚糖继获得巨噬细胞和中性粒细胞可以识别和杀灭肿瘤细胞、清除氧化损害的细胞残骸,加速回复受损组织以及激活免疫系统的其他部分。[7 8]尽管动物试验和试管试验体现出很好的前景,但仍有许多关于β葡聚糖作为口服补充剂增强免疫功能的有效性问题未能解决。

β葡聚糖是燕麦降低胆固醇作用的主要因子。[9 10 11 12 13]和其他可溶纤维及胆固醇(胆汁酸)联合在一起时,β葡聚糖可以清除粪便中的这些分子,从而对于降低血胆固醇有一定帮助[14 15 16]。许多关于燕麦或酵母提取出的β葡聚糖的双盲试验得出,4周后可以降低10%的总胆固醇和8%的低密度脂蛋白(有害的),以及将高密度脂蛋白(有益的)从0提高到16%。[17 18 19 20 21]

和其他可溶性纤维一样,在以前的试验中可看到,β葡聚糖对于降低餐后血糖有一定帮助。[22 23 24 25]β葡聚糖通过延缓胃的排空来改善糖的吸收,同时还可能提高了组织对胰岛素的敏感性。这些作用对于糖尿病人的血糖控制有一定的功效。

β葡聚糖的分布

许多酵母和谷类如燕麦、大麦的细胞壁中含有β葡聚糖。作为饮食补充,β葡聚糖可作为流质、胶囊和药片服用。

β葡聚糖认为与以下疾病有关(以下所有信息适用于个体化健康情况):

分类健康情况
首选高胆固醇
其它提高免疫力

首选 有可靠和相对一致的科研数据证明其对健康有显著改善。

次选 各有关科研结果相互矛盾、证据不充分或仅能初步表明其可改善健康状况或效果甚微。

其它 对草药来说,仅有传统用法可支持其应用,但尚无或仅有少量科学证据可证明其疗效。对营养补充剂来说,无科学证据支持和/或效果甚微。

哪些人可能会缺乏β葡聚糖?

因为β葡聚糖不是必需营养素,所以不存在缺乏。

一般需要多少β葡聚糖?

为了降低胆固醇水平,β葡聚糖在临床试验中的剂量为每天2900~15000毫克。为了增强免疫力,有效的剂量还缺乏试验支持。可是,厂家们生产的β葡聚糖通常在每天50~1000毫克(空腹服用),另外还有些胶囊制成500毫克。

是否有副作用和药物相互作用?

还没有关于β葡聚糖副作用的报道。

到目前为止,还不知道β葡聚糖与其他药物间的相互作用。

参考文献

1. Czop JK. The role of beta-glucan receptors on blood and tissue leukocytes in phagocytosis and metabolic activation. Pathol Immunopathol Res 1986;5:286-96.

2. Wakshull E, Brunke-Reese D, Lindermuth J, et al. PGG-glucan, a soluble beta-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity, and activates an NF-kappa B-like factor in human PMN: evidence for a glycosphingolipid beta-(1,3)-glucan receptor. Immunopharmacology 1999;41:89-107.

3. Czop JK, Kay J. Isolation and characterization of beta-glucan receptors on human mononuclear phagocytes. J Exp Med 1991;173:1511-20.

4. Czop JK, Puglisi AV, Miorandi DZ, Austen KF. Perturbation of beta-glucan receptors on human neutrophils initiates phagocytosis and leukotriene B4 production. J Immunol 1988;141:3170-6.

5. Estrada A, Yun CH, Van Kessel A, et al. Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol Immunol 1997;41:991-8.

6. Ooi VE, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr Med Chem 2000;7:715-29 [review].

7. Ross GD, Vetvicka V, Yan J, et al. Therapeutic intervention with complement and beta-glucan in cancer. Immunopharmacology 1999;42:61-74.

8. Di Renzo L, Yefenof E, Klein E. The function of human NK cells is enhanced by beta-glucan, a ligand of CR3 (CD11b/CD18). Eur J Immunol 1991 Jul;21:1755-8.

9. Bell S, Goldman VM, Bistrian BR, et al. Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr 1999;39:189-202 [review].

10. Bell S, Goldman VM, Bistrian BR, et al. Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr 1999;39:189-202 [review].

11. Behall KM, Scholfield DJ, Hallfrisch J. Effect of beta-glucan level in oat fiber extracts on blood lipids in men and women. J Am Coll Nutr 1997;16:46-51.

12. Braaten JT, Wood PJ, Scott FW, et al. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 1994;48:465-74.

13. Davidson MH, Dugan LD, Burns JH, et al. The hypocholesterolemic effects of beta-glucan in oatmeal and oat bran. A dose-controlled study. JAMA 1991;265:1833-9.

14. Wood PJ. Physicochemical properties and physiological effects of the (1----3)(1----4)-beta-D-glucan from oats. Adv Exp Med Biol 1990;270:119-27.

15. Uusitupa MI, Miettinen TA, Sarkkinen ES, et al. Lathosterol and other non-cholesterol sterols during treatment of hypercholesterolaemia with beta-glucan-rich oat bran. Eur J Clin Nutr 1997;51:607-11.

16. Lia A, Hallmans G, Sandberg AS, et al. Oat beta-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr 1995;62:1245-51.

17. Bell S, Goldman VM, Bistrian BR, et al. Effect of beta-glucan from oats and yeast on serum lipids. Crit Rev Food Sci Nutr 1999;39:189-202 [review].

18. Nicolosi R, Bell SJ, Bistrian BR, et al. Plasma lipid changes after supplementation with beta-glucan fiber from yeast. Am J Clin Nutr 1999;70:208-12.

19. Behall KM, Scholfield DJ, Hallfrisch J. Effect of beta-glucan level in oat fiber extracts on blood lipids in men and women. J Am Coll Nutr 1997;16:46-51.

20. Braaten JT, Wood PJ, Scott FW, et al. Oat beta-glucan reduces blood cholesterol concentration in hypercholesterolemic subjects. Eur J Clin Nutr 1994;48:465-74.

21. Uusitupa MI, Ruuskanen E, Makinen E, et al. A controlled study on the effect of beta-glucan-rich oat bran on serum lipids in hypercholesterolemic subjects: relation to apolipoprotein E phenotype. J Am Coll Nutr 1992;11:651-9.

22. Braaten JT, Scott FW, Wood PJ, et al. High beta-glucan oat bran and oat gum reduce postprandial blood glucose and insulin in subjects with and without type 2 diabetes. Diabet Med 1994;11:312-8.

23. Wood PJ. Physicochemical properties and physiological effects of the (1----3)(1----4)-beta-D-glucan from oats. Adv Exp Med Biol 1990;270:119-27.

24. Bourdon I, Yokoyama W, Davis P, et al. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with beta-glucan. Am J Clin Nutr 1999;69:55-63.

25. Pick ME, Hawrysh ZJ, Gee MI. Oat bran concentrate bread products improve long-term control of diabetes: a pilot study. J Am Diet Assoc 1996;96:1254-61.