SUBSCRIBE

减肥、饮食和健身jianfeiyinshihejianshen

比任何药物都灵验:增强心肺锻炼与左旋肉碱、乳清蛋白营养处方

时间:2021-01-15 15:40 阅读:3989 来源:朴诺健康研究院

目  录

一、概述

二、引言

三、运动的类型

四、锻炼的好处

五、我需要做多少运动?

六、加强锻炼的策略

七、综合干预

八、参考文献


一、概述

摘要和速览

  1. 将心肺健康与健康长寿联系起来的证据是数不胜数的。事实上,保持心肺健康比任何药物都更能降低慢性病和死亡的风险。

  2. 在本文中,您将发现创新的方法,以一种综合方法最大化定期体育活动的好处。您还将了解各种天然制剂的性能增强效果,包括肌酸、肉碱、乳清蛋白、ω-3脂肪酸和维生素D。

  3. 对大多数人来说,持续进行中等强度到高强度的体育锻炼可以改善心肺功能。平衡练习也有助于老年人防止跌倒。

为什么定期锻炼很重要?

在世界范围内,缺乏体育锻炼是导致过早死亡的第四大危险因素。锻炼身体是你能为你的健康做的最重要的事情之一。无论年龄、性别和能力,每个人都能从定期锻炼中受益。

将心肺健康与健康长寿联系起来的证据是数不胜数的。事实上,保持心肺健康比任何药物都更能降低慢性病和死亡的风险。经常锻炼可以减缓身体衰老的速度,降低患癌症、痴呆、骨质疏松、心脏病、中风、抑郁症、肥胖症、2型糖尿病和高血压的风险。

运动,包括有氧运动、力量或阻力训练、拉伸和高强度间歇训练(HIIT),是最有效的抗衰老策略之一。运动能有力地激活一种叫做AMPK(AMP活化蛋白激酶)的主要长寿因子,AMPK是与长寿有关的能量代谢的关键调节因子。此外,有规律的体育锻炼已被证明能有助于健康的免疫功能,增强认知功能,改善心血管危险因素,改善与年龄有关的肌肉质量损失,等等。

新的研究表明,有针对性的自然干预,如肌酸、肉碱、支链氨基酸、谷氨酰胺和维生素D,可以帮助最大限度地提高运动对健康和长寿的益处。

我需要做多少运动?

美国卫生与公众服务部于2018年更新的最新报告建议,健康成年人应参与:

  1. 每周150分钟中等强度有氧运动或75分钟剧烈有氧运动,或同等组合;

  2. 以及每周至少进行两次力量或压力训练。

2018年的更新还指出了以下几点:

  1. 每周进行300分钟以上的中等强度活动或150分钟以上的高强度活动可以获得额外的好处。

  2. 老年人每周应进行150分钟中等强度的体育活动,或尽其健康和能力所能。

  3. 鼓励所有年龄段的人参加额外的活动,培养灵活性、敏捷性、平衡性和协调性(例如:瑜伽)。

提高运动成绩的综合策略是什么?

  1. 男性和女性激素恢复。对健康老年男性的研究表明,激素替代疗法(HRT)可以提高运动能力和肌肉力量。使用常规HRT的绝经后妇女在运动诱导的胰岛素敏感性方面比不使用HRT的绝经后妇女有更大的改善。

  2. 饮食方面的考虑。在运动前4到6小时吃一顿含有碳水化合物的饭可以确保肌肉和肝脏中糖原(储存的碳水化合物能量)的充足储备。国际运动营养学会建议运动后三小时内摄入蛋白质和碳水化合物。

  3. 咖啡因。研究表明,在运动前或运动中摄入咖啡因可以提高耐力运动的表现。例如,接受竞争性训练的摄入5 mg/kg体重咖啡因的男性,相当于170磅体重的人喝两到四杯咖啡,能够在胸部按压时举起更大的重量,并具有更加强大的无氧运动能力。

  4. 肌酸。在老年人群中,肌酸补充,无论有没有阻力运动,都能够增强肌肉力量和质量,增强骨强度,并减缓肌少症的速度。研究中使用的肌酸剂量通常为150磅个体每天5-21 g。

  5. 左旋肉碱。研究表明,补充2 g左旋肉碱可以提高运动能力和恢复力。

  6. 支链氨基酸(亮氨酸、异亮氨酸和缬氨酸)。在一项双盲安慰剂对照研究中,连续三天补充支链氨基酸可增强疲劳抵抗力,并提高力竭耐力运动期间脂肪燃烧的所提供的能量。

  7. 维生素D。血液中充足的维生素D水平对于预防和恢复肌肉骨骼损伤非常重要,并且与减少炎症和疼痛、增强肌肉和提高运动成绩有关。

  8. 谷氨酰胺。在一项为期两周的男性大学生武术运动员的对照试验中,连续两周每天补充3 g谷氨酰胺可减少肌肉损伤,防止免疫功能下降,这也包括在剧烈训练期间。


二、引言

缺乏体育锻炼是全球第四大早死风险因素。1纵观人类历史,生存需要体育锻炼。日常体力劳动定义并塑造了人体的功能。

今天,普遍缺乏体育锻炼直接导致许多慢性疾病,并减少预期寿命,寿命的减少程度与吸烟或者肥胖差不多。身体不进行活动可能占所有过早死亡原因的约10%。2,3

将心肺健康与健康长寿联系起来的证据是数不胜数的。4-7事实上,保持心肺健康比任何药物都更能降低慢性病和死亡的风险。8-11

专家们呼吁在常规心血管健康筛查中加入对心肺健康状况的测量,如次最大摄氧量(VO2 max)估计值,以及更典型的指标,如胆固醇、血压和血红蛋白A1C。4,6,7

体育活动可以包括各种令人愉快的活动,如跳舞、园艺、观光和其他简单的替代久坐的行为。即使是每周75分钟的快走也与长寿和健康息息相关。12

在细胞水平上,运动保护DNA免受氧化损伤,并使产生能量的线粒体恢复活力。13-15运动还能激活AMPK(AMP活化蛋白激酶)——能量代谢的关键调节因子。16

在本文中,您将发现创新的方法,以一种综合方法最大化定期体育活动的好处。例如,激素恢复,包括令人印象深刻的运动增强肾上腺激素DHEA的效果,将会被提及。您还将了解各种天然制剂的性能增强效果,包括肌酸、肉碱、乳清蛋白、ω-3脂肪酸和维生素D。


三、运动的类型

一个全面的锻炼计划包括有氧,肌肉增强,柔韧性和平衡练习。17,18

有氧运动

有氧运动是有节奏的、长时间的身体活动,能提高心脏和呼吸频率。有氧运动包括快走、跑步、骑自行车和游泳。有氧训练可增强心肺功能,改善脑血流量,降低因心脏病和各种原因死亡的风险。17,19-21

“有氧运动”是指有氧代谢,其中氧气用于再生线粒体中的能量储存分子ATP(三磷酸腺苷)。血液中的葡萄糖、肌肉细胞中的糖原(储存的碳水化合物)以及血液和肌肉细胞中的游离脂肪酸为ATP的产生提供了燃料。22

肌肉强化训练

肌肉强化或抵抗运动包括针对外部阻力的有力肌肉收缩。17这种运动增加肌肉力量、大小和耐力,防止肌少症或者与年龄相关的肌肉质量和力量损失。当以适当的速度进行力量训练时,也能提高心血管耐力。肌肉强化训练的例子包括自由举重或机器举重、使用阻力带或体重的重量训练。17,18,23

柔韧性训练

柔韧性或伸展运动需要缓慢而稳定地伸展肌肉群。应连续拉伸至60秒,不加入跃动和弹跳。虽然预计会有轻微的不适,但柔韧性训练不应该是痛苦的,因为疼痛可能表示轻微的肌肉撕裂。柔韧性练习与肌肉强化练习相结合,可以提高运动范围,放松肌肉。运动前伸展可以增强心理准备,但是在是否能防止受伤的证据上却有争论。运动后,当肌肉温暖时,伸展运动可能更有效。17,24-26

平衡训练

平衡练习,如单腿保持一定姿势或使用平衡板,可以帮助个人意识到运动和相对位置的问题,也有助于防止摔倒,27美国心脏协会和美国运动医学院建议经常跌倒或行动不便的人进行平衡训练。指导方针包括以下类型活动的建议18

  1. 增加姿势的难度,减少支撑面,如从两腿姿势发展到单腿姿势

  2. 扰乱重心的运动,如脚跟到脚趾的行走和原地转弯

  3. 用对某些肌肉群施加压力的姿势,如用脚趾或脚跟站立

  4. 减少感觉输入,如闭着眼睛站着

肌肉强化运动还通过加强支撑关节的肌肉和肌腱来改善平衡。17

最近的研究考察了不同的运动训练方法如何影响细胞生物学的各个方面,包括端粒酶活性和端粒长度。端粒是染色体末端的结构成分,在细胞衰老和再生中起着重要作用。在每个细胞分裂周期中,端粒缩短。当它们达到临界长度时,细胞进入衰老。端粒变短与心血管疾病、肥胖、糖尿病以及预期寿命缩短相关。健康的饮食、不久坐的生活方式和规律的运动可能与端粒的延长有关。28

端粒酶是向端粒中添加核苷酸从而调节端粒长度的酶。研究表明,端粒可能以一种渐进的、与年龄相关的方式缩短,但从4岁到39岁,端粒酶活性会稳步下降。40岁以后,大约65%的人端粒酶活性水平较低但稳定,而大约35%的人没有检测到端粒酶活性水平。研究表明,与那些不经常锻炼的人相比,运动活跃的成年人具有端粒结合因子的上调的特点,而端粒结合因子可以防止端粒缩短。29

其他观察性研究表明,尤其是在老年人群中,较强水平的体育活动与较长的端粒结构相关。这可能是因为激运动能对抗氧化应和炎症,改变端粒酶活性,增加骨骼肌卫星细胞(骨骼肌前体细胞,有助于损伤后肌肉再生)的数量。29

在一项研究中,124名先前未运动的健康男性被随机分为有氧耐力训练组、高强度间歇训练组、阻力训练组或不运动的对照组。每项干预包括每周三次的45分钟训练,并持续6个月。

三种训练方法均能提高VO2max。耐力训练组和间歇训练组的端粒酶活性上调了两到三倍,而阻力训练组则没有。耐力组和间歇组的白细胞水平也升高。一次耐力训练,而非阻力训练,会增加某些白细胞的端粒酶活性。因此,有氧运动可以促进细胞健康和健康的老龄化。30

需要更多介入性研究来证实运动强度和频率对端粒长度和端粒酶活性的特异性影响。

高强度间歇训练

高强度间歇训练(HIIT)越来越流行。这种类型的运动训练包括短暂、反复的剧烈运动,然后是恢复期。31,32高强度间歇训练可以使用几种不同的方案进行。高强度运动阶段可以持续5秒到8分钟,然后是不运动或低强度运动的恢复期,可以持续与运动阶段一样长的时间。在运动过程中,心率达到最大心率的80-90%。也许最常见的方案是30秒的最大负荷运动循环,然后是4分钟的恢复期,每个疗程重复4到6次,每周3次。另外还设计了其他要求较低的运动形式。32-34 

在一项为期12周的研究中,对先前久坐的男性进行了为期30分钟的锻炼,其中只有3分钟是剧烈运动,并伴随每周150分钟的中等强度的持续训练。尽管时间投入减少了5倍,间隔训练在改善胰岛素敏感性、心肺功能和骨骼肌线粒体含量方面与传统耐力训练有同样功效。35

其他一些研究表明HIIT在改善心肺功能、血管内皮功能、胰岛素敏感性和动脉硬度方面优于持续的中等强度训练。HIIT还可以改善血压和胆固醇水平,促进脂肪的减少,并同时保持肌肉,对2型糖尿病患者或有患2型糖尿病风险的患者可能特别有益。32,36-38

在对生活方式引起的慢性病患者的研究回顾中,HIIT在改善心肺健康方面的效果几乎是低强度持续运动的两倍,而心肺健康是死亡率的一个强有力的预测因子。38

尽管人们认为,对更剧烈运动建议的遵从性较差,但一项针对糖尿病前期患者的研究发现,坚持短期高强度间歇跑比传统的连续运动更有效。39在另一项研究中,人们认为高强度间歇跑比连续跑更令人愉快。此外,由于缺乏时间是不进行避免锻炼的常见借口,因此HIIT持续时间很短可能是锻炼的主要动机。32,39,40

HIIT应该根据个人的健康水平进行调整。建议有健康问题的人在开始HIIT计划之前获得医疗许可。32


四、锻炼的好处

抗衰老作用

大量的证据支持运动的抗衰老作用。即使是适度的休闲时间体育活动例如每周快步走75分钟,也与较长的预期寿命相关。12此外,一项针对日本百岁老人的研究表明,定期锻炼与老人的自立性相关。41

运动会影响衰老的几个特征,包括DNA修复、细胞衰老和线粒体功能。13耐力运动可减少衰老个体的氧化性DNA损伤14,并增加线粒体的生物合成,从而在肌肉和脑组织中产生新的线粒体。15

运动有助于预防衰老过程中的心血管疾病,并有助于避免肌少症,或者与年龄有关的肌肉质量和力量损失。42,43抗阻运动所带来的肌肉力量的改善可以提升功能能力,降低老年人患病和残疾的风险。44体育运动,特别是抵抗力训练,也有助于保持在老化过程中的健康的骨密度。45

运动还能有力地激活AMPK这一能量代谢的关键调节器和另一个主要的长寿因素。16 AMPK是一种促进葡萄糖和脂肪燃烧以产生细胞能量的酶。AMPK还抑制异常细胞生长(如癌症),促进新线粒体的产生,并增加胰岛素敏感性。16,46,47

AMPK激活可能是运动对健康有益的众多原因之一;相反,缺乏AMPK激活可能会导致久坐生活方式对健康的不利影响。16,46

抗糖尿病药物二甲双胍也能激活AMPK,并可能减轻与不运动相关的其他慢性疾病,如心脏病和癌症。46,48,49

临床前证据表明,AMPK对运动的激活程度随着年龄的增长而降低。50因此,AMPK激活剂,如二甲双胍和绞股蓝植物提取物,可以提升老年人的运动水平。

抗免疫衰老

随着年龄的增长,免疫系统的逐渐恶化被称为免疫衰老。免疫衰老与疫苗接种反应差以及感染、癌症、心血管疾病、糖尿病和其他与年龄相关的慢性疾病的风险增加相关。51-53

新的研究证据表明,有规律的运动可以防止免疫衰老,并可能使衰老的免疫系统重新恢复活力。51,54,55在一项针对健康男性受试者的研究中,心肺健康状况较好的受试者衰老和无功能T细胞(免疫衰老的标志性特征)的与年龄相关的积累较低。56

人类和动物的研究表明,经常锻炼也对免疫衰老的其他标志物有积极影响。这些措施包括增强疫苗接种反应、降低血液中炎性细胞因子水平、增强自然杀伤(NK)细胞活性,以及在病毒感染和某些癌症中获得更好的疗效。57

定期进行中高强度的运动(即50%至70%的最大耗氧量)(例如每周5天,每天30分钟的运动)可以增强免疫功能,降低慢性病的发病率。51,55,58

心血管保护

运动可以改善一些心血管风险参数,包括血压、炎症、葡萄糖和胰岛素代谢、血管内皮功能、脑血流和血脂。59,60

最近对近400个随机对照试验(约40000名参与者)的元分析评估了耐力、动态阻力、等长阻力、耐力和阻力联合运动干预和抗高血压药物(血管紧张素转换酶抑制剂、血管紧张素2受体阻滞剂、β受体阻滞剂、钙通道阻滞剂和利尿剂)对正常人和高血压患者的收缩压水平的影响。

与对照组相比,耐力和阻力训练以及所有种类的抗高血压药物都能降低收缩压。在所有人群中,抗高血压药物的作用更大。在高血压患者中,药物治疗和耐力或阻力运动在降低血压方面没有差异。为了更全面地了解运动如何降低收缩压,还需要进一步的研究。61

运动对现有心血管疾病的治疗也是有益的。60,62根据对63项纳入了近15000名冠心病患者的随机对照试验的回顾研究发现,基于运动的心脏康复计划降低了因心脏病导致的死亡率和住院率。在大多数研究中,锻炼也提高了患者的生活质量。63

注:患有心血管疾病的患者在开始运动前应咨询合格的医疗机构。

认知健康

体育锻炼可以防止老年人认知能力下降,降低患阿尔茨海默病和帕金森病等神经系统疾病的风险。有氧运动可减少随着年龄增长而出现的脑组织损失。64-68

大量证据表明,体育运动和锻炼可以提升人一生的认知功能和幸福感。64,69,70在一项针对2747名介于18-30岁年轻人的研究中,更强的有氧适能与之后中年时期的的更好的语言记忆和意识活动速度相关。70同样地,另一项研究发现,与不太活跃的参与者相比,从事休闲时间体育活动最多的中年参与者在28年后患痴呆症的可能性会更小。69

运动通过增强神经细胞之间的信息传递来改善认知健康。脑源性神经营养因子作为一种信号蛋白,在这一过程中起着关键作用。运动能增加大脑中一个叫做海马体的区域脑源性神经营养因子的产生,海马体对学习和记忆至关重要。有趣的是,运动甚至可以增加海马体的大小。64,65

来自活动小鼠的生长因子改善久坐小鼠的大脑健康

有趣的是,临床前研究表明,运动的认知益处可以通过给药循环血液因子来传递。在一项针对老年小鼠的研究中,运动小鼠的血浆被给予久坐小鼠。运动小鼠的神经发生增加,脑源性神经营养因子的表达增加,学习和记忆能力提升,而接受运动小鼠血浆的静坐小鼠也有同样的益处。研究人员发现,一种来自肝脏的特异性血液因子,糖基磷脂酰肌醇特异性磷脂酶D1(Gpld1),在运动后增加,并与小鼠认知功能的改善相关。Gpld1的浓度在活跃健康的老年人中也增加。当Gpld1在老年小鼠肝脏中过度表达时,小鼠在神经发生和认知功能方面也有同样的改善。249这项研究提供了新的希望,体育活动的认知益处有朝一日可能实现,即使是对于那些不能锻炼的小鼠。未来的研究可以探索是否可以通过将生长因子从年轻人、锻炼者转移到老年人或久坐的人身上来获得类似的益处。

体重管理

根据美国心脏协会和美国心脏病学院的建议,长期减肥最好通过改变生活方式来实现,包括低热量饮食和增强体育活动。71,72

预防糖尿病

运动能提高胰岛素敏感性,帮助控制血糖水平,改善心血管危险因素,如高血压和高血脂。即使是一次锻炼也会产生许多有益的效果。73-75

随机试验表明,在高风险人群中,将体力活动与适度减肥相结合可降低高达58%的2型糖尿病风险。73,74在一项为期四年的随机对照生活方式干预试验中,参与者增加体育运动和减少热量摄入可导致11.5%的糖尿病在第一年部分或完全缓解,而7.3%的参与者在四年后仍处于部分或完全缓解状态。76

慢性疼痛管理

对264项已发表的研究进行了详细分析,其中包括近20000名参与者,研究发现运动和体育活动与疼痛、功能能力和生活质量的适度改善有关。另一项对已发表研究回顾发现,每周在工作场所进行三次20分钟的高强度力量训练,可以显著减轻肩部和脊柱的疼痛。77在另一项分析中,在监督和家庭基础上进行的渐进式肩部强化和伸展练习可以缓解肩部疼痛。对于轻度肩痛,运动提供的短期益处与单次类固醇注射相似。78

防止身体功能随年龄下降:例如肌肉减少症和骨质疏松症

肌肉减少症是指随着年龄的增长,肌肉质量和力量逐渐减少。骨质疏松症是一种以低骨量、增加骨脆性和更大骨折风险为特征的疾病。肌肉减少症和骨质疏松症在老年人中都很常见;其会增加跌倒和骨折的风险;并与身体虚弱、活动能力下降和死亡风险增高相关。42,79-85

身体活动和运动训练,包括有氧运动和力量训练,增加骨量、肌力、平衡和活动能力。86-88对科学文献的回顾研究发现,规律的体育活动是唯一能持续改善老年人身体虚弱和肌肉减少症及其功能表现的有效干预措施。43

即使是体弱的老年人,包括那些生活在公共机构中的老年人,运动也证明了对身体机能的改善。89,90建议成人和体弱的老年人定期进行有氧运动和力量训练。43

肠道微生物组调节

胃肠道中的微生物对人体健康起着至关重要的作用。微生物多样性的增加与新陈代谢、免疫功能和整体健康的改善相关。而微生物平衡的紊乱,包括肠道微生物组多样性的减少,与多种疾病有关,包括肥胖症、代谢综合征和炎症性肠病。91-94

虽然饮食和抗生素使用等一系列因素影响肠道微生物组,但早期证据表明,运动可能对肠道菌群产生积极影响。91在一项研究中,职业运动员的肠道微生物多样性明显高于对照组。运动员和对照组之间的饮食差异可能能解释其中的一些影响。93,95

一项针对小鼠的研究发现,运动改变了肠道微生物组成,改善了肠道结构的完整性,减少了胃肠道炎症。96在另一项针对小鼠的研究中,运动增加了肠道微生物组的丰度和多样性,并防止了毒素引起的微生物丰度降低。97


五、我需要做多少运动?

任何程度的体育活动都比不运动好。与久坐不动的人相比,即使参加少量体力活动的人死亡的风险也降低了20%。18,24,98-100

美国卫生与公众服务部每10年发布一次最新的美国人身体活动指南。101他们最近的报告建议成年人每周进行150分钟的中等强度有氧运动或进行75分钟的剧烈有氧运动,或者是同等组合。此外,每周至少进行两次力量训练。

报告还指出,每周进行300分钟的中等强度活动或150分钟的高强度活动可以获得更大的健康收益。

老年人每周应该进行150分钟的中等强度的体育活动,或者尽可能多的体育活动。平衡练习也有助于防止老年人跌倒。

所有年龄段的人都鼓励进行瑜伽等活动,以培养灵活性、敏捷性、平衡性和协调性。18、24、98-100

心肺健康评估

尽管心肺功能非常重要,但一般的临床评估并不包括心肺功能。迫切需要将有氧运动测试与血压、血糖和胆固醇测量等传统测量相结合起来,用于个体心血管风险评估。4,7

心肺健康可以通过测量最大摄氧量来评估,其也被称为VO2max,即身体在运动中利用氧气的最大能力。然而,直接测量最大摄氧量需要达到最强体力劳动水平,这通常是困难的,且对一些老年人来说可能是不安全的。102,103

次极限运动测试是一种流行的和更实用的替代评估有氧运动健康的方法。这种方法通过确定次高强度运动(如踏步、骑自行车或在跑步机上跑步或步行)的心率反应来估计最大摄氧量。102-104这些类型的测试可通过健身中心或运动医疗设施进行。如果你有兴趣进行次极限运动测试,请咨询你的医疗保健提供者。

对于大多数人来说,持续进行中等强度到高强度的体育活动可以改善心肺功能。3,7


六、加强锻炼的策略

激素恢复(男性和女性)

与年龄相关的睾酮和生长激素水平下降与老年男性肌肉质量和力量、运动能力和活动能力的丧失相关。此外,衰老与体内脂肪堆积和胰岛素抵抗有关。105老年人肌肉质量和力量的减少也伴随着与年龄相关的激素DHEA(脱氢表雄酮)的迅速下降。106

睾酮和生长激素是有效的合成代谢(组织生长)剂,增加肌肉质量,但它们通过不同的机制发挥作用。睾丸激素和生长激素的结合比单独使用任何一种激素都有更大的合成代谢作用。事实上,对健康老年男性的研究表明,激素替代疗法(HRT)与睾酮和生长激素联合治疗,而非单独治疗,可以提高运动能力和肌肉力量。

总的来说,这些研究表明,在六个月内使用中等剂量的睾酮和生长激素治疗是安全的。105然而,长期使用生长激素治疗可能会增加某些癌症的风险。107有癌症风险的人在开始生长激素治疗前应咨询医疗保健提供者,长期使用可能是不明智的。

在女性中,使用雌激素和孕激素的激素替代疗法也可能增强运动的效果。在一项研究中,使用常规HRT的绝经后妇女在运动诱导的胰岛素敏感性方面比不使用HRT的绝经后妇女有更大的改善。108

生物同源性激素替代疗法(BHT)-包括孕酮、雌二醇和雌三醇已成为治疗更年期症状的传统HRT的流行替代方案。生物同源性激素在结构上与人类激素相同。109-111

回顾研究数据发现,使用生物同源性激素可降低患乳腺癌和心血管疾病的风险,而使用BHT治疗更年期症状的效果与传统HRT相同。

饮食方面的考虑

适当的进餐时间可以提高运动能力,有助于运动后的恢复和组织修复。114-116

在运动前4到6小时吃一顿含碳水化合物的饭可以确保肌肉和肝脏中糖原(储存的碳水化合物能量)的充足储备。运动前30至60分钟额外摄入碳水化合物和蛋白质零食,可防止高强度运动结束时能量消耗,并有助于防止肌肉组织中的蛋白质分解。115

在长时间的高强度运动期间(即超过60分钟),应每15-20分钟摄入一次含有碳水化合物和电解质的饮料(10-15 fl.oz),以防止低血糖。115

运动后营养摄入对于补充糖原储备和修复运动中受损的肌肉组织非常重要。国际运动营养学会建议运动后三小时内摄入蛋白质和碳水化合物。115,117

老年人可能需要更多的运动后蛋白质摄入才能最大限度地恢复。117一项研究表明,运动后补充20g蛋白质能最大限度地刺激年轻男性肌肉的蛋白质合成118;另一项研究发现,在老年男性中,运动后补充40g乳清蛋白比补充20g乳清蛋白更能促进肌肉蛋白质的合成。

咖啡因

研究表明,在运动前或运动中摄入咖啡因可以提高耐力运动的表现。新的研究还表明,咖啡因有助于短期、高强度的突发性运动。例如,接受过竞争训练的男性,摄入5mg/kg体重的咖啡因后,胸部按压能承受的总重量会增加,产生更大的无氧动力。120这一剂量的咖啡因相当于一个170磅的人喝2到4杯咖啡。121,122大约150到300mg的咖啡因,或者大约一到三杯咖啡,已被证明能在力竭运动期间和之后提高注意力和决策能力。121

咖啡因能量效应的可能机制包括增加脂肪燃烧、减少疲劳、中枢神经系统刺激和减少疼痛感知。121,123,124咖啡因的刺激效应主要是由于它能够阻断大脑中的腺苷受体。125,126

摄入咖啡因可能产生的副作用包括心率加快、睡眠紊乱和紧张;这些副作用在低剂量时通常不太明显。121对咖啡因的反应也因人而异。127-129最近的一项研究表明,老年人可能更容易受到咖啡因干扰睡眠的影响,因此,意识到睡眠质量和适当调整咖啡因的使用是相当重要的。130


七、综合干预

主要支持

肌酸。肌酸是人体内自然产生的一种化合物,也可以通过饮食获得,主要是通过肉类和鱼类。补充肌酸不仅是运动员使用的最受欢迎和研究最充分的强力手段之一,131,132它还是预防或减缓与年龄相关的肌肉减少(称为肌少症)的有效药物,并改善了老年人的认知能力。133-135小鼠研究表明肌酸可能有效的潜在抗衰老作用。136

大量研究表明,补充肌酸可以增加肌肉质量,提高运动成绩。132,135肌酸最有效地辅助高强度、短时间的活动(如短跑或举重),这些活动从磷酸肌酸中获取能量。22,131,137

在老年人中,补充肌酸,无论是否进行抗阻运动,都能增强肌肉力量和质量,增加骨强度,并减缓肌肉减少症的发生率。此外,根据一项分析,在增加老年男性和女性的肌肉质量、力量和功能表现方面,肌酸补充与肌肉强化运动相结合比单独运动更加有效。133

纳入老年受试者的研究中使用的肌酸剂量通常为5-21g/天,这是对于150磅的个体在有限的时间内使用的剂量。138服用含有碳水化合物或蛋白质和碳水化合物的肌酸补充剂,可能会增加肌酸在肌肉中的保留。132

左旋肉碱。左旋肉碱是一种从食物中提取的化合物,其由人体必需的氨基酸赖氨酸和蛋氨酸合成。它是燃烧脂肪在线粒体内产生能量所必需的,可以作为自由基清除剂。139

研究表明,补充左旋肉碱可以提高运动能力和恢复能力。139,140在一项随机、双盲、安慰剂对照试验中,健康男性志愿者每天两次摄入2g左旋肉碱和80g碳水化合物,持续24周,与对照组相比,肌肉中的肉毒碱含量增加了21%,而对照组无变化。这与减少对力量的感知和提高运动成绩有关。140

通过减少自由基生成和肌肉酸痛,补充左旋肉碱可支持剧烈运动后的肌肉恢复。141,142在一项针对健康年轻男性的安慰剂对照试验中,两周内口服补充2 g左旋肉碱可显著降低急性运动后的氧化应激和肌肉损伤指标。139

支链氨基酸。必需支链氨基酸(BCAAs)亮氨酸、异亮氨酸和缬氨酸对肌肉蛋白质的合成非常重要,并被肌肉细胞燃烧以获取能量。143-147

人类和动物研究表明,补充摄入BCAAs可提高运动耐力。148-150在一项双盲安慰剂对照研究中,使用三天的BCAA补充增加了疲劳抵抗力,并在导致糖原(储存的碳水化合物)消耗的力竭性耐力运动中增强了以脂肪燃烧作为燃料的能力。151

与其他必需氨基酸一样,支链氨基酸也是肌肉蛋白质合成的前体(构建块)。152重要的是,支链氨基酸,尤其是亮氨酸,也通过直接刺激肌肉生长和抑制肌肉蛋白质降解发挥合成代谢作用。143,154

通过减少肌肉蛋白质的分解和促进蛋白质的合成,支链氨基酸可促进运动恢复。143,154在一项对长跑运动员进行高强度训练的研究中,补充支链氨基酸可减少疼痛和疲劳,以及j减少炎症和肌肉损伤的标志物。155

维生素D。维生素D在骨代谢、肌肉功能和免疫健康中起着重要作用。血液中充足的维生素D水平对于预防和恢复肌肉骨骼损伤非常重要,其也与减少炎症和疼痛、强健肌肉和提高运动成绩有关。156,157

除了在预防骨折和肌肉损伤方面的作用外,研究还表明,维生素D可能具有提高运动成绩的作用。不幸的是,许多运动员缺乏维生素D。156,158日剂量为3300至5000 IU的补充维生素D试验发现,运动员的短跑和跳跃成绩有所改善,循环睾酮也有所增加。156,158,159

一组科学家建议,每天补充4000至5000 IU的维生素D3,以及50至1000 mcg的维生素K1和K2混合物,以补充维生素D在骨和钙代谢中的作用,以使其通过改善恢复时间和肌肉功能来支持运动表现。158

谷氨酰胺。谷氨酰胺,因为它能够在体内合成,因此是一种非必需氨基酸。然而,当血液中的谷氨酰胺水平在疾病和压力时期降低时,谷氨酰胺就成为“条件性必需的氨基酸”。160-163

谷氨酰胺在肌肉损伤的免疫反应中发挥作用。162,164,165在一项对男性大学生武术运动员为期两周的对照试验中,包括在剧烈训练期间每天补充3 g谷氨酰胺并持续两周,可减少肌肉损伤,防止免疫功能下降。166一项对照临床试验,对接受强化训练的运动员每天使用10 g谷氨酰胺,为期三周,结果发现免疫功能得到了改善,白细胞特征也证明了这一点,其中包括NK细胞活性的增加。167另一项对照临床试验发现,给予在大强度长时间运动后立即和两小时后服用5 g谷氨酰胺,与服用安慰剂的人相比,上呼吸道感染减少约40%。168

DHEA。脱氢表雄酮(DHEA)由肾上腺产生,连同其硫酸形式的DHEA-S,是循环中最丰富的类固醇激素。169,170 DHEA是性激素如雌激素和雄激素的前体。DHEA水平在25岁左右达到峰值,到75岁时下降约80%。106,171

研究表明,补充DHEA具有增强运动的效果。106,172在一项针对老年男性和女性的研究中,补充DHEA可显著增强肌肉生长和抵抗运动的力量。106

在一项随机对照试验中,单剂量50 mg 的DHEA使中年男性的游离睾酮水平高于基线水平。给药后进行一次HIIT,之后补充DHEA的中年人体内的游离睾酮仍然会升高。172

乳清蛋白。乳清蛋白是一组含有高浓度必需氨基酸和支链氨基酸的乳源性蛋白质,可激活肌肉蛋白质合成和恢复,以应对抵抗力训练。173补充乳清蛋白可显著降低体重和体脂,并在结合抵抗力训练时增加瘦体重的质量。173-176

乳清蛋白被迅速消化和吸收。亮氨酸是一种富含乳清蛋白的支链氨基酸,其在肌肉蛋白质代谢、健康的葡萄糖代谢和体重维持中起着重要作用。147,173,177

在一项研究中,给予健康受试者从最高强度运动中恢复的乳清蛋白显著增加了肌肉卫星细胞的数量。这些卫星细胞或干细胞是肌肉再生所必需的。176,178在另一项研究中,在12周的腿部阻力训练(膝伸肌训练)后使用的高亮氨酸乳清蛋白水解物在增加肌肉和肌腱生长方面比安慰剂更有效。179

HMB(β-羟基β-甲基丁酸酯)。HMB是氨基酸亮氨酸的代谢物,有助于维持肌肉功能,支持肌肉生长和力量。240 HMB有助于保留肌肉结构,支持抵抗力和耐力训练。241,242一种潜在的作用机制是其会调节蛋白质合成中涉及的细胞信号通路。243

在一项随机、安慰剂对照、双盲研究中,19名健康老年人被限制卧床休息10天,然后接受8周的抵抗力训练。在整个康复过程中,受试者从卧床休息前五天开始,每天两次服用安慰剂或1.5 g CaHMB(β-羟基β-甲基丁酸钙)。服用安慰剂的人在卧床休息后瘦体重显著减少,而治疗组中几乎所有人都保持了肌肉质量。244在另一项随机安慰剂对照研究中,13名习惯于剧烈耐力运动的受试者每天服用安慰剂或3 g HMB。经过6周的日常训练和补充,所有受试者都进行了20公里(12.4英里)的跑步,然后对肌肉损伤进行评估。服用HMB的患者与安慰剂组相比,肌酸磷酸激酶和乳酸脱氢酶(两种肌肉损伤标志物)水平的跑步后的增加减少。245

在另一项双盲、随机、安慰剂对照试验中,大约80名65岁以上的老年人被分为四组:两个非运动组,一个服用安慰剂组,一个每天两次服用3 g CaHMB组;两个抗阻运动组,一个服用安慰剂,另一个每天两次服用3 g CaHMB。阻力训练改善了瘦体重和表现指标,如握力,而补充CaHMB但不运动提高了力量和肌肉质量。CaHMB和运动组在减肥和减肥方面表现出了改善,作者得出结论:“通过CaHMB补充,无论是否进行阻力训练,健康老年男性和女性的力量、肌肉质量、身体成分和功能都可以得到改善。”246

在另一项试验中,20名经历过抵抗训练的男性被随机分配在接受抵抗训练之前服用3 g HMB-FA(HMB的游离酸形式)组或者安慰剂组。然后测量肌肉损伤、肌肉蛋白质分解和主观运动恢复。结果表明,当在运动前给予训练有素的运动员HMB-FA时,可以减少肌肉损伤和主观恢复时间。247对9项研究进行的荟萃分析确定,在阻力训练期间补充HMB有助于先前未经训练的男子的整体和腿部力量的提升。248

附加支持

D-核糖。D-核糖是天然糖核糖的生物活性形式,由葡萄糖在体内产生。核糖参与ATP的合成,ATP在运动中为肌肉细胞提供能量。在高强度运动中,补充核糖可加速ATP的合成。180-182

一项针对12名男性休闲健身者的对照试验发现,连续四周每天补充10 g核糖,比安慰剂组更能增强肌肉力量和耐力。183 D-核糖也有助于对抗疲劳,改善老年人的情绪和活力,184并可能可以增加锻炼频率。一项剂量研究发现,空腹服用D-核糖比随食物服用D-核糖的吸收效率更高。185

有时,人们会关注D-核糖促进破坏性糖基化反应的可能性。当核糖的浓度很高时,它可以促进糖基化反应,但通过补充D-核糖所导致的量并不会令人担忧。

ω-3脂肪酸。越来越多的证据支持使用ω-3脂肪来改善剧烈运动后的恢复。186,187ω-3脂肪酸,特别是二十碳五烯酸(EPA),对预防和治疗肌肉减少症是有益的。188,189在一项针对老年人的对照研究中,与玉米油相比,每天补充含有1.8 g以上EPA和1.5 g二十二碳六烯酸(DHA)增加了肌肉蛋白质的合成速率,而玉米油没有任何益处。189

辅酶Q10。辅酶Q10(CoQ10)是在细胞线粒体中一系列产生能量的生化反应的重要组成部分。辅酶Q10还具有自由基清除剂的功能,保护细胞免受氧化损伤。190-192临床研究证明辅酶Q10补充剂具有增强运动的作用。193,194在一项针对受过训练和未受过训练的个体的研究中,连续14天补充100 mg辅酶Q10可延长受试者在筋疲力尽前能够锻炼的时间。194

一项针对男性跑步者的随机对照研究发现,14天的辅酶Q10补充可降低一次中距离竞争性跑步引起的乳酸、白细胞介素-6、肿瘤坏死因子-α和C-反应蛋白的血药浓度峰值。195研究中辅酶Q10的剂量为5 mg/kg体重/天,或者说一个155磅的人每天使用350 mg。

在一项动物研究中,大鼠在运动训练期间补充辅酶Q10 并持续6周。这使关键调节蛋白的水平产生了有益的变化,包括核因子κB和Nrf2,两者都能抵御炎症和氧化应激。191

精氨酸。精氨酸是一种条件必需氨基酸,参与多种代谢途径,包括蛋白质合成。更重要的是,精氨酸是一氧化氮(NO)的前体,一氧化氮是一种有效的血管扩张剂。补充精氨酸可增加肌肉的血流量。196-198

在一项针对竞技男性自行车运动员的对照临床试验中,连续三天每天补充6 g L-精氨酸可提高20公里计时赛成绩,减少耗氧量,降低收缩压和舒张压。199在另一项针对未经训练的大学生男性的临床对照试验中,与安慰剂组相比,补充四周含有1.5 g或3 g精氨酸(连同葡萄籽提取物)的产品可减少自行车运动引起疲劳的时间。196

动物研究表明,补充精氨酸可能有利于运动恢复。200,201在一项研究中,在一次运动前补充L-精氨酸可减少大鼠的肌纤维损伤,并保持运动能力。这些效应归因于肌肉一氧化氮含量的增加。200

白藜芦醇。白藜芦醇是一种多酚化合物,存在于植物和植物食物中,如葡萄、红酒、花生和日本结缕草。202,203白藜芦醇已被证明对慢性退行性疾病中的若干因素有积极影响,包括炎症、胰岛素敏感性、氧化应激和内皮功能障碍。204-208

有临床和临床前证据表明,白藜芦醇可以增强运动对肌肉线粒体能力的影响,增强能量的产生和利用。204,209在一项针对健康年轻人的双盲安慰剂对照试验中,每天补充500 mg白藜芦醇,加上10 mg胡椒碱(一种黑胡椒提取物),保持四周的低强度耐力运动后显著提高了肌肉线粒体的含量。204

两项动物研究发现,与单独运动相比,补充白藜芦醇改善了运动表现。210,211在一项研究中,在12周的运动训练期间,喂食补充白藜芦醇的饮食的大鼠能够比未经白藜芦醇训练的大鼠跑动距离更长更远。白藜芦醇治疗的大鼠的肌力也得到改善。211

绞股蓝。绞股蓝是一种历史悠久的中药保健品。临床前研究表明绞股蓝的成分可以激活AMPK,AMPK是体内葡萄糖、脂肪和能量代谢的主要调节因子。212,213

动物实验证明了绞股蓝的抗疲劳作用。212,214在其中一项研究中,绞股蓝多糖延长了大鼠的力竭性游泳时间。绞股蓝多糖提取物还可降低血乳酸水平,增加肝脏和肌肉糖原浓度。212

一项在小鼠身上进行的研究发现,服用绞股蓝多糖后,从运动到筋疲力尽的时间延长与减少氧化应激和提高肌肉糖原水平相关。214

冬虫夏草。冬虫夏草是一种药用真菌,数百年来在中国和印度被用作促进活力、耐力和长寿。215-217科学研究发现,冬虫夏草菌丝体可以提升运动能力。216,218

在一项针对50至75岁成年人的双盲安慰剂对照试验中,补充12周的冬虫夏草发酵菌丝提取物可延缓疲劳,并改善运动试验中的有氧运动表现。215

另一项动物研究发现,冬虫夏草菌丝体可能模拟了运动对新陈代谢的一些好处。补充冬虫夏草可以提高大鼠的运动耐力,尽管其本身缺乏训练。显著的AMPK激活被认为是这种效应的部分原因。218冬虫夏草增强运动效应的潜在机制包括改善血糖调节、增加胰岛素敏感性和增加细胞能量来源产生的ATP。215,218

人参。人参(也称为中国或韩国人参)是一种流行的草药,在世界范围内用于增强体力和减少疲劳。219-221人参根增强性能的潜在机制包括提高脂肪对能量的利用(同时保留糖原),以及血管舒张分子一氧化氮水平的增加,以及轻微的中枢神经系统刺激。219,220,222-226多项临床试验和动物研究表明,人参可以提高运动能力,防止疲劳。它可能对老年人和业余运动员有更大的影响。220,222,224,226-228

人参似乎能延缓运动引起的疲劳。220,221,225,229在一项健康男性受试者的对照研究中,在跑步机上运动前8周补充人参根提取物可减少丙二醛(氧化应激的标志物)的形成。且运动至筋疲力尽的时间显著延长。226

人参多糖和人参皂甙中的两种化合物被认为有助于人参的抗疲劳性能。219,223,224

人参皂甙被肠道细菌转化为生物活性化合物,如人参皂甙化合物K。230人参皂甙化合物K具有抗癌、抗炎和抗过敏的特性,有助于人参的保健作用。230,231发酵人参含有人参皂甙化合物K,使发酵成为提高生物利用度的一种方法。232,233

红景天。在欧洲、亚洲和北美洲的山区发现的红景天是一种草药,其作为一种抗疲劳、抗压力和情绪增强剂在传统医学中有着悠久的使用历史。研究还表明,红景天对人和动物的运动表现和耐力有积极的影响。234-237红景天是一种适应原,提高身体适应体育锻炼压力的能力。238,239红景天还可增加脂肪对能量的利用,改善线粒体功能,抑制自由基。216,238,239

在一项对活跃的年轻女性进行的对照试验中,红景天通过减少感知能力来提高耐力锻炼的表现。单剂量口服红景天的受试者(3 mg/kg体重,或者150磅的人服用200 mg红景天)在一辆固定自行车上完成了一项6英里的试验,其速度明显快于服用安慰剂的受试者。在这项研究中,红景天还降低了对次极量运动的心率反应。234

另一项安慰剂对照试验测量了24名受试者的红景天提取物的效果,标准化的红景天提取物含有3%的罗莎芬和1%的红景天苷。研究人员注意到,急性服用200 mg红景天提取物一小时后,耐力运动能力有所提升。237

红景天可以减轻运动引起的肌肉损伤。在一项针对男性运动员的研究中,在进行力竭性耐力训练之前补充四周的红景天可以显著降低肌肉损伤的指标。值得注意的是,在剧烈运动后升高的血清肌酸激酶水平在摄入红景天后得到显著降低。238


本文提出了许多问题,这些问题可能会随着新数据的出现而发生变化。 我们建议的营养或治疗方案均不用于确保治愈或预防任何疾病。Piping Rock健康研究院没有对参考资料中包含的数据进行独立验证,并明确声明对文献中的任何错误不承担任何责任。”


八、参考文献

1.WHO. World Health Organization. 10 facts on physical activity. http://www.who.int/features/factfiles/physical_activity/en/. Last updated 2/2014. Accessed 12/28/2016.

2.Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. Jul 21 2012;380(9838):219-229.

3.Bouchard C, Blair SN, Katzmarzyk PT. Less Sitting, More Physical Activity, or Higher Fitness? Mayo Clinic proceedings. Nov 2015;90(11):1533-1540.

4.Despres JP. Physical Activity, Sedentary Behaviours, and Cardiovascular Health: When Will Cardiorespiratory Fitness Become a Vital Sign? The Canadian journal of cardiology. Apr 2016;32(4):505-513.

5.Lakoski SG, Willis BL, Barlow CE, Leonard D, Gao A, Radford NB, . . . Jones LW. Midlife Cardiorespiratory Fitness, Incident Cancer, and Survival After Cancer in Men: The Cooper Center Longitudinal Study. JAMA Oncol. May 2015;1(2):231-237.

6.Kaminsky LA, Arena R, Beckie TM, Brubaker PH, Church TS, Forman DE, . . . Williams MA. The importance of cardiorespiratory fitness in the United States: the need for a national registry: a policy statement from the American Heart Association. Circulation. Feb 5 2013;127(5):652-662.

7.Lee DC, Artero EG, Sui X, Blair SN. Mortality trends in the general population: the importance of cardiorespiratory fitness. Journal of psychopharmacology (Oxford, England). Nov 2010;24(4 Suppl):27-35.

8.Bishop-Bailey D. Mechanisms governing the health and performance benefits of exercise. British journal of pharmacology. Nov 2013;170(6):1153-1166.

9.EIM. American College of Sports Medicine. Exercise is Medicine: A Global Health Initiative. http://www.exerciseismedicine.org/. Copyright 2017. Accessed 4/6/2017.

10.Mossberg KA, Amonette WE, Masel BE. Endurance Training and Cardiorespiratory Conditioning after Traumatic Brain Injury. J Head Trauma Rehabil. 2010;25(3):173-183.

11.Reents S. Measuring Fitness: Aerobic Capacity. http://www.athleteinme.com/ArticleView.aspx?id=242. Last updated 2/28/2016. Accessed 12/28/2016.

12.Moore SC, Patel AV, Matthews CE, Berrington de Gonzalez A, Park Y, Katki HA, . . . Lee IM. Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis. PLoS Med. 2012;9(11):e1001335.

13.Garatachea N, Pareja-Galeano H, Sanchis-Gomar F, Santos-Lozano A, Fiuza-Luces C, Moran M, . . . Lucia A. Exercise attenuates the major hallmarks of aging. Rejuvenation Res. Feb 2015;18(1):57-89.

14.Parise G, Brose AN, Tarnopolsky MA. Resistance exercise training decreases oxidative damage to DNA and increases cytochrome oxidase activity in older adults. Exp Gerontol. Mar 2005;40(3):173-180.

15.Steiner JL, Murphy EA, McClellan JL, Carmichael MD, Davis JM. Exercise training increases mitochondrial biogenesis in the brain. Journal of applied physiology (Bethesda, Md. : 1985). Oct 2011;111(4):1066-1071.

16.O'Neill HM. AMPK and Exercise: Glucose Uptake and Insulin Sensitivity. Diabetes Metab J. Feb 2013;37(1):1-21.

17.Johnston BD. Merck Manual. Professional Version. Overview of Exercise. https://www.merckmanuals.com/professional/special-subjects/exercise/overview-of-exercise. Last updated 10/2016. Accessed 4/6/2017.

18.Chodzko-Zajko WJ, Proctor DN, Fiatarone Singh MA, Minson CT, Nigg CR, Salem GJ, Skinner JS. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Medicine and science in sports and exercise. Jul 2009;41(7):1510-1530.

19.Wang Y, Li M, Dong F, Zhang J, Zhang F. Physical exercise-induced protection on ischemic cardiovascular and cerebrovascular diseases. International Journal of Clinical and Experimental Medicine. 2015a;8(11):19859-19866.

20.Burton DA, Stokes K, Hall GM. Physiological effects of exercise. Continuing Education in Anaesthesia, Critical Care & Pain. December 1, 2004 2004;4(6):185-188.

21.Ainslie PN, Cotter JD, George KP, Lucas S, Murrell C, Shave R, . . . Atkinson G. Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. The Journal of physiology. 2008;586(16):4005-4010.

22.Baker JS, McCormick MC, Robergs RA. Interaction among Skeletal Muscle Metabolic Energy Systems during Intense Exercise. Journal of nutrition and metabolism. 2010;2010:905612.

23.ACSM. American College of Sports Medicine. Resistance Training for Health and Fitness. https://www.acsm.org/docs/brochures/resistance-training.pdf. Copyright 2013. Accessed 1/3/2017.

24.Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, . . . Swain DP. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Medicine and science in sports and exercise. Jul 2011;43(7):1334-1359.

25.Witvrouw E, Mahieu N, Danneels L, McNair P. Stretching and injury prevention: an obscure relationship. Sports medicine (Auckland, N.Z.). 2004;34(7):443-449.

26.Mayo Clinic. Patient Care & Health Info page. Stretching: Focus on flexibility. http://www.mayoclinic.org/healthy-lifestyle/fitness/in-depth/stretching/art-20047931. Last updated 2/21/2017. Accessed 4/6/2017.

27.Johnson EO, Soucacos PN. International Encyclopedia of Rehabilitation: Proprioception. Copyright 2017 by the Center for International Rehabilitation Research Information and Exchange (CIRRIE). http://cirrie.buffalo.edu/encyclopedia/en/article/337/. Accessed 1/3/2017

28.Shammas M. Telomeres, lifestyle, cancer, and aging. Curr Opin Clin Nutr Metab Care. 2011 Jan;14(1):28–34.

29.Arsenis N, You T, Ogawa E, et al. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget. 2017;8(27):45008–45019.

30.Werner C, Hecksteden A, Morsch A, Zundler J, et al. Differential effects of endurance, interval, and resistance training on telomerase activity and telomere length in a randomized, controlled study. European Heart Journal. Ehy585. 2018.

31.Smith-Ryan AE, Melvin MN, Wingfield HL. High-intensity interval training: Modulating interval duration in overweight/obese men. The Physician and sportsmedicine. May 2015;43(2):107-113.

32.ACSM. American College of Sports Medicine. High-Intensity Interval Training. https://www.acsm.org/docs/brochures/high-intensity-interval-training.pdf. Copyright 2014. Accessed 4/6/2017.

33.Shiraev T, Barclay G. Evidence based exercise - clinical benefits of high intensity interval training. Australian family physician. Dec 2012;41(12):960-962.

34.Boutcher SH. High-intensity intermittent exercise and fat loss. Journal of obesity. 2011;2011:868305.

35.Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve Weeks of Sprint Interval Training Improves Indices of Cardiometabolic Health Similar to Traditional Endurance Training despite a Five-Fold Lower Exercise Volume and Time Commitment. PloS one. 2016;11(4):e0154075.

36.Ciolac EG. High-intensity interval training and hypertension: maximizing the benefits of exercise? American journal of cardiovascular disease. 2012;2(2):102-110.

37.Jelleyman C, Yates T, O'Donovan G, Gray LJ, King JA, Khunti K, Davies MJ. The effects of high-intensity interval training on glucose regulation and insulin resistance: a meta-analysis. Obes Rev. Nov 2015;16(11):942-961.

38.Weston KS, Wisloff U, Coombes JS. High-intensity interval training in patients with lifestyle-induced cardiometabolic disease: a systematic review and meta-analysis. British journal of sports medicine. Aug 2014;48(16):1227-1234.

39.Jung ME, Bourne JE, Beauchamp MR, Robinson E, Little JP. High-intensity interval training as an efficacious alternative to moderate-intensity continuous training for adults with prediabetes. J Diabetes Res. 2015;2015:191595.

40.Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. The Journal of physiology. Mar 1 2012;590(5):1077-1084.

41.Ozaki A, Uchiyama M, Tagaya H, Ohida T, Ogihara R. The Japanese Centenarian Study: autonomy was associated with health practices as well as physical status. J Am Geriatr Soc. Jan 2007;55(1):95-101.

42.Avin KG, Coen PM, Huang W, Stolz DB, Sowa GA, Dube JJ, . . . Ambrosio F. Skeletal muscle as a regulator of the longevity protein, Klotho. Front Physiol. 2014;5:189.

43.Landi F, Marzetti E, Martone AM, Bernabei R, Onder G. Exercise as a remedy for sarcopenia. Current opinion in clinical nutrition and metabolic care. Jan 2014;17(1):25-31.

44.Manini TM, Pahor M. Physical activity and maintaining physical function in older adults. British journal of sports medicine. Jan 2009;43(1):28-31.

45.Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, . . . Creed G. Exercise for preventing and treating osteoporosis in postmenopausal women. The Cochrane database of systematic reviews. Jul 06 2011(7):Cd000333.

46.Richter EA, Ruderman NB. AMPK and the biochemistry of exercise: implications for human health and disease. The Biochemical journal. Mar 1 2009;418(2):261-275.

47.Vincent EE, Coelho PP, Blagih J, Griss T, Viollet B, Jones RG. Differential effects of AMPK agonists on cell growth and metabolism. Oncogene. Jul 2015;34(28):3627-3639.

48.Barzilai N, Crandall JP, Kritchevsky SB, Espeland MA. Metformin as a Tool to Target Aging. Cell metabolism. Jun 14 2016;23(6):1060-1065.

49.Anisimov VN. Metformin: do we finally have an anti-aging drug? Cell cycle (Georgetown, Tex.). Nov 15 2013;12(22):3483-3489.

50.Reznick RM, Zong H, Li J, Morino K, Moore IK, Yu HJ, . . . Shulman GI. Aging-associated reductions in AMP-activated protein kinase activity and mitochondrial biogenesis. Cell metabolism. Feb 2007;5(2):151-156.

51.Turner JE. Is immunosenescence influenced by our lifetime "dose" of exercise? Biogerontology. Mar 29 2016.

52.Goronzy JJ, Weyand CM. Understanding immunosenescence to improve responses to vaccines. Nat Immunol. 2013;14(5):428-436.

53.Maijo M, Clements SJ, Ivory K, Nicoletti C, Carding SR. Nutrition, diet and immunosenescence. Mech Ageing Dev. Mar-Apr 2014;136-137:116-128.

54.Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. Progress in molecular biology and translational science. 2015;135:355-380.

55.Simpson RJ, Bosch JA. Special issue on exercise immunology: current perspectives on aging, health and extreme performance. Brain Behav Immun. Jul 2014;39:1-7.

56.Spielmann G, McFarlin BK, O'Connor DP, Smith PJ, Pircher H, Simpson RJ. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav Immun. Nov 2011;25(8):1521-1529.

57.Simpson RJ, Lowder TW, Spielmann G, Bigley AB, LaVoy EC, Kunz H. Exercise and the aging immune system. Ageing Res Rev. Jul 2012;11(3):404-420.

58.Brown WM, Davison GW, McClean CM, Murphy MH. A Systematic Review of the Acute Effects of Exercise on Immune and Inflammatory Indices in Untrained Adults. Sports medicine - open. 2015;1(1):35.

59.Eijsvogels TM, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events. Journal of the American College of Cardiology. Jan 26 2016;67(3):316-329.

60.Wang Y, Li M, Dong F, Zhang J, Zhang F. Physical exercise-induced protection on ischemic cardiovascular and cerebrovascular diseases. International journal of clinical and experimental medicine. 2015b;8(11):19859-19866.

61.Naci H, Salcher-Konrad M, Dias S, et al. How does exercise treatment compare with antihypertensive medications? A network meta-analysis of 391 randomised controlled trials assessing exercise and medication effects on systolic blood pressure. Brit J of Sports Med. 2018. doi: 10.1136/bjsports-2018-099921

62.Hegde SM, Solomon SD. Influence of Physical Activity on Hypertension and Cardiac Structure and Function. Curr Hypertens Rep. Oct 2015;17(10):77.

63.Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS. Exercise-Based Cardiac Rehabilitation for Coronary Heart Disease: Cochrane Systematic Review and Meta-Analysis. Journal of the American College of Cardiology. Jan 5 2016;67(1):1-12.

64.Gomez-Pinilla F, Hillman C. The influence of exercise on cognitive abilities. Compr Physiol. Jan 2013;3(1):403-428.

65.Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of aging research. 2013;2013:657508.

66.Kelly ME, Loughrey D, Lawlor BA, Robertson IH, Walsh C, Brennan S. The impact of exercise on the cognitive functioning of healthy older adults: a systematic review and meta-analysis. Ageing Res Rev. Jul 2014;16:12-31.

67.Tse AC, Wong TW, Lee PH. Effect of Low-intensity Exercise on Physical and Cognitive Health in Older Adults: a Systematic Review. Sports medicine - open. 2015;1(1):37.

67.Colcombe SJ, Erickson KI, Raz N, Webb AG, Cohen NJ, McAuley E, Kramer AF. Aerobic fitness reduces brain tissue loss in aging humans. J Gerontol A Biol Sci Med Sci. Feb 2003;58(2):176-180.

68.Tolppanen AM, Solomon A, Kulmala J, Kareholt I, Ngandu T, Rusanen M, . . . Kivipelto M. Leisure-time physical activity from mid- to late life, body mass index, and risk of dementia. Alzheimer's & dementia: the journal of the Alzheimer's Association. Apr 2015;11(4):434-443.e436.

69.Zhu N, Jacobs DR, Jr., Schreiner PJ, Yaffe K, Bryan N, Launer LJ, . . . 70.Sternfeld B. Cardiorespiratory fitness and cognitive function in middle age: the CARDIA study. Neurology. Apr 15 2014;82(15):1339-1346.

71.Higgins JP, Higgins CL. Prescribing exercise to help your patients lose weight. Cleveland Clinic journal of medicine. Feb 2016;83(2):141-150.

72.Bray GA, Fruhbeck G, Ryan DH, Wilding JP. Management of obesity. Lancet. Feb 8 2016.

73.Stanford KI, Goodyear LJ. Exercise and type 2 diabetes: molecular mechanisms regulating glucose uptake in skeletal muscle. Advances in physiology education. Dec 2014;38(4):308-314.

74.Colberg SR, Albright AL, Blissmer BJ, Braun B, Chasan-Taber L, Fernhall B, . . . Sigal RJ. Exercise and type 2 diabetes: American College of Sports Medicine and the American Diabetes Association: joint position statement. Exercise and type 2 diabetes. Medicine and science in sports and exercise. Dec 2010;42(12):2282-2303.

75.Asano RY, Sales MM, Browne RA, Moraes JF, Coelho Junior HJ, Moraes MR, Simoes HG. Acute effects of physical exercise in type 2 diabetes: A review. World J Diabetes. Oct 15 2014;5(5):659-665.

76.Gregg EW, Chen H, Wagenknecht LE, Clark JM, Delahanty LM, Bantle J, . . . Bertoni AG. Association of an intensive lifestyle intervention with remission of type 2 diabetes. Jama. Dec 19 2012;308(23):2489-2496.

77.Rodrigues EV, Gomes AR, Tanhoffer AI, Leite N. Effects of exercise on pain of musculoskeletal disorders: a systematic review. Acta ortopedica brasileira. 2014;22(6):334-338.

78.Abdulla SY, Southerst D, Cote P, Shearer HM, Sutton D, Randhawa K, . . . Taylor-Vaisey A. Is exercise effective for the management of subacromial impingement syndrome and other soft tissue injuries of the shoulder? A systematic review by the Ontario Protocol for Traffic Injury Management (OPTIMa) Collaboration. Manual therapy. Oct 2015;20(5):646-656.

79.Edwards MH, Dennison EM, Aihie Sayer A, Fielding R, Cooper C. Osteoporosis and sarcopenia in older age. Bone. Nov 2015;80:126-130.

80.Blain H, Rolland Y, Beauchet O, Annweiler C, Benhamou CL, Benetos A, . . . Thomas T. Usefulness of bone density measurement in fallers. Joint, bone, spine : revue du rhumatisme. Oct 2014;81(5):403-408.

81.Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, . . . Zamboni M. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing. Jul 2010;39(4):412-423.

82.He H, Liu Y, Tian Q, Papasian CJ, Hu T, Deng HW. Relationship of sarcopenia and body composition with osteoporosis. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. Feb 2016;27(2):473-482.

83.Go SW, Cha YH, Lee JA, Park HS. Association between Sarcopenia, Bone Density, and Health-Related Quality of Life in Korean Men. Korean journal of family medicine. Jul 2013;34(4):281-288.

84.Kim S, Won CW, Kim BS, Choi HR, Moon MY. The association between the low muscle mass and osteoporosis in elderly Korean people. J Korean Med Sci. Jul 2014;29(7):995-1000.

85.Reginster JY, Beaudart C, Buckinx F, Bruyere O. Osteoporosis and sarcopenia: two diseases or one? Current opinion in clinical nutrition and metabolic care. Jan 2016;19(1):31-36.

86.Shanb AA, Youssef EF. The impact of adding weight-bearing exercise versus nonweight bearing programs to the medical treatment of elderly patients with osteoporosis. Journal of family & community medicine. Sep 2014;21(3):176-181.

87.Beck BR, Daly RM, Singh MA, Taaffe DR. Exercise and Sports Science Australia (ESSA) position statement on exercise prescription for the prevention and management of osteoporosis. Journal of science and medicine in sport / Sports Medicine Australia. Oct 31 2016.

88.Castrogiovanni P, Trovato FM, Szychlinska MA, Nsir H, Imbesi R, Musumeci G. The importance of physical activity in osteoporosis. From the molecular pathways to the clinical evidence. Histology and histopathology. Nov 2016;31(11):1183-1194.

89.Weening-Dijksterhuis E, de Greef MH, Scherder EJ, Slaets JP, van der Schans CP. Frail institutionalized older persons: A comprehensive review on physical exercise, physical fitness, activities of daily living, and quality-of-life. American journal of physical medicine & rehabilitation / Association of Academic Physiatrists. Feb 2011;90(2):156-168.

90.Chin APMJ, van Uffelen JG, Riphagen I, van Mechelen W. The functional effects of physical exercise training in frail older people: a systematic review. Sports medicine (Auckland, N.Z.). 2008;38(9):781-793.

91.Cerda B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M. Gut Microbiota Modification: Another Piece in the Puzzle of the Benefits of Physical Exercise in Health? Front Physiol. 2016;7:51.

92.Robles Alonso V, Guarner F. Linking the gut microbiota to human health. The British journal of nutrition. Jan 2013;109 Suppl 2:S21-26.

93.Clarke SF, Murphy EF, O'Sullivan O, Lucey AJ, Humphreys M, Hogan A, . . . Cotter PD. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. Dec 2014;63(12):1913-1920.

94.Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exercise immunology review. 2015;21:70-79.

95.O'Sullivan O, Cronin O, Clarke SF, Murphy EF, Molloy MG, Shanahan F, Cotter PD. Exercise and the microbiota. Gut Microbes. 2015;6(2):131-136.

96.Campbell SC, Wisniewski PJ, Noji M, McGuinness LR, Haggblom MM, Lightfoot SA, . . . Kerkhof LJ. The Effect of Diet and Exercise on Intestinal Integrity and Microbial Diversity in Mice. PloS one. 2016;11(3):e0150502.

97.Choi JJ, Eum SY, Rampersaud E, Daunert S, Abreu MT, Toborek M. Exercise attenuates PCB-induced changes in the mouse gut microbiome. Environ Health Perspect. Jun 2013;121(6):725-730.

98.Gebel K, Ding D, Chey T, Stamatakis E, Brown WJ, Bauman AE. Effect of Moderate to Vigorous Physical Activity on All-Cause Mortality in Middle-aged and Older Australians. JAMA Intern Med. Jun 2015;175(6):970-977.

99.Arem H, Moore SC, Patel A, Hartge P, Berrington de Gonzalez A, Visvanathan K, . . . Matthews CE. Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. Jun 2015;175(6):959-967.

100.NIH. National Institutes of Health. National Heart, Lung, and Blood Institute. Recommendations for Physical Activity. http://www.nhlbi.nih.gov/health/health-topics/topics/phys/recommend. Last updated 6/22/2016. Accessed 11/8/2016.

101.DHHS. Department of Health and Human Services. Physical Activity Guidelines for Americans: 2nd edition. https://health.gov/paguidelines/second-edition/pdf/Physical_Activity_Guidelines_2nd_edition.pdf. Copyright 2018. Accessed 11/12/2018.

102.Gahche J, Fakhouri T, Carroll DD, Burt VL, Wang CY, Fulton JE. Cardiorespiratory fitness levels among U.S. youth aged 12-15 years: United States, 1999-2004 and 2012. NCHS Data Brief. May 2014(153):1-8.

103.Sartor F, Vernillo G, de Morree HM, Bonomi AG, La Torre A, Kubis HP, Veicsteinas A. Estimation of maximal oxygen uptake via submaximal exercise testing in sports, clinical, and home settings. Sports medicine (Auckland, N.Z.). Sep 2013;43(9):865-873.

104.Percia M, Davis S, Dwyer G. American College of Sports Medicine. Getting a Professional Fitness Assessment https://www.acsm.org/public-information/articles/2012/01/10/getting-a-professional-fitness-assessment. 10/7/2016. Accessed 4/6/2017.

105.Giannoulis MG, Martin FC, Nair KS, Umpleby AM, Sonksen P. Hormone replacement therapy and physical function in healthy older men. Time to talk hormones? Endocr Rev. Jun 2012;33(3):314-377.

106.Villareal DT, Holloszy JO. DHEA enhances effects of weight training on muscle mass and strength in elderly women and men. American journal of physiology. Endocrinology and metabolism. Nov 2006;291(5):E1003-1008.

107.Jenkins PJ, Mukherjee A, Shalet SM. Does growth hormone cause cancer? Clinical endocrinology. Feb 2006;64(2):115-121.

108.Huffman KM, Slentz CA, Johnson JL, Samsa GP, Duscha BD, Tanner CJ, . . . Kraus WE. Impact of hormone replacement therapy on exercise training-induced improvements in insulin action in sedentary overweight adults. Metabolism: clinical and experimental. Jul 2008;57(7):888-895.

109.Borg WP. Point/Counterpoint: The Case Against Bioidentical Hormones. Journal of American Physicians and Surgeons. 2008;13(2):47.

110.Moskowitz D. A comprehensive review of the safety and efficacy of bioidentical hormones for the management of menopause and related health risks. Alternative medicine review : a journal of clinical therapeutic. Sep 2006;11(3):208-223.

111.Whelan AM, Jurgens TM, Trinacty M. Defining bioidentical hormones for menopause-related symptoms. Pharm Pract (Granada). Jan 2011;9(1):16-22.

112.Holtorf K. The bioidentical hormone debate: are bioidentical hormones (estradiol, estriol, and progesterone) safer or more efficacious than commonly used synthetic versions in hormone replacement therapy? Postgrad Med. Jan 2009;121(1):73-85.

113.Conaway E. Bioidentical hormones: an evidence-based review for primary care providers. J Am Osteopath Assoc. Mar 2011;111(3):153-164.

114.Rodriguez NR, Di Marco NM, Langley S. American College of Sports Medicine position stand. Nutrition and athletic performance. Medicine and science in sports and exercise. Mar 2009;41(3):709-731.

115.Kreider RB, Wilborn CD, Taylor L, Campbell B, Almada AL, Collins R, . . . Antonio J. ISSN exercise & sport nutrition review: research & recommendations. Journal of the International Society of Sports Nutrition. Feb 02 2010;7:7.

116.Kerksick C, Harvey T, Stout J, Campbell B, Wilborn C, Kreider R, . . . Antonio J. International Society of Sports Nutrition position stand: nutrient timing. Journal of the International Society of Sports Nutrition. Oct 03 2008;5:17.

117.Aragon AA, Schoenfeld BJ. Nutrient timing revisited: is there a post-exercise anabolic window? Journal of the International Society of Sports Nutrition. 2013;10(1):5.

118.Moore DR, Robinson MJ, Fry JL, Tang JE, Glover EI, Wilkinson SB, . . . Phillips SM. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition. Jan 2009;89(1):161-168.

119.Yang Y, Breen L, Burd NA, Hector AJ, Churchward-Venne TA, Josse AR, . . . Phillips SM. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. The British journal of nutrition. Nov 28 2012;108(10):1780-1788.

120.Woolf K, Bidwell WK, Carlson AG. The effect of caffeine as an ergogenic aid in anaerobic exercise. International journal of sport nutrition and exercise metabolism. Aug 2008;18(4):412-429.

121.Spriet LL. Exercise and sport performance with low doses of caffeine. Sports medicine (Auckland, N.Z.). Nov 2014;44 Suppl 2:S175-184.

122.Astorino TA, Roberson DW. Efficacy of acute caffeine ingestion for short-term high-intensity exercise performance: a systematic review. Journal of strength and conditioning research / National Strength & Conditioning Association. Jan 2010;24(1):257-265.

123.Beedie CJ. All in the mind? Pain, placebo effect, and ergogenic effect of caffeine in sports performance. Open Access J Sports Med. 2010;1:87-94.

124.Doherty M, Smith PM. Effects of caffeine ingestion on rating of perceived exertion during and after exercise: a meta-analysis. Scandinavian journal of medicine & science in sports. Apr 2005;15(2):69-78.

125.Ribeiro JA, Sebastiao AM. Caffeine and adenosine. Journal of Alzheimer's disease : JAD. 2010;20 Suppl 1:S3-15.

126.Urry E, Landolt HP. Adenosine, caffeine, and performance: from cognitive neuroscience of sleep to sleep pharmacogenetics. Current topics in behavioral neurosciences. 2015;25:331-366.

127.Yang A, Palmer AA, de Wit H. Genetics of caffeine consumption and responses to caffeine. Psychopharmacology. Aug 2010;211(3):245-257.

128.Chen Y, Parrish TB. Caffeine dose effect on activation-induced BOLD and CBF responses. NeuroImage. Jul 1 2009;46(3):577-583.

129.Pirastu N, Kooyman M, Robino A, van der Spek A, Navarini L, Amin N, . . . Gasparini P. Non-additive genome-wide association scan reveals a new gene associated with habitual coffee consumption. Scientific Reports. 2016;6:31590.

130.Clark I, Landolt HP. Coffee, caffeine, and sleep: A systematic review of epidemiological studies and randomized controlled trials. Sleep medicine reviews. Feb 2017;31:70-78.

131.UMMC. University of Maryland Medical Center. Complementary and Alternative Medicine Guide. Supplement. Creatine. http://umm.edu/health/medical/altmed/supplement/creatine. 6/26/2014a. Accessed 4/6/2017.

132.Cooper R, Naclerio F, Allgrove J, Jimenez A. Creatine supplementation with specific view to exercise/sports performance: an update. Journal of the International Society of Sports Nutrition. 2012;9(1):33.

133.Devries MC, Phillips SM. Creatine supplementation during resistance training in older adults-a meta-analysis. Medicine and science in sports and exercise. Jun 2014;46(6):1194-1203.

134.Moon A, Heywood L, Rutherford S, Cobbold C. Creatine supplementation: can it improve quality of life in the elderly without associated resistance training? Current aging science. Dec 2013;6(3):251-257.

135.Wallimann T, Tokarska-Schlattner M, Schlattner U. The creatine kinase system and pleiotropic effects of creatine. Amino acids. May 2011;40(5):1271-1296.

136.Klopstock T, Elstner M, Bender A. Creatine in mouse models of neurodegeneration and aging. Amino acids. May 2011;40(5):1297-1303.

137.Spillane M, Schoch R, Cooke M, Harvey T, Greenwood M, Kreider R, Willoughby DS. The effects of creatine ethyl ester supplementation combined with heavy resistance training on body composition, muscle performance, and serum and muscle creatine levels. Journal of the International Society of Sports Nutrition. 2009;6:6.

138.Dalbo VJ, Roberts MD, Lockwood CM, Tucker PS, Kreider RB, Kerksick CM. The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults. Dynamic medicine: DM. 2009;8:6.

139.Parandak K, Arazi H, Khoshkhahesh F, Nakhostin-Roohi B. The effect of two-week L-carnitine supplementation on exercise -induced oxidative stress and muscle damage. Asian journal of sports medicine. Jun 2014;5(2):123-128.

140.Wall BT, Stephens FB, Constantin-Teodosiu D, Marimuthu K, Macdonald IA, Greenhaff PL. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. The Journal of physiology. Feb 15 2011;589(Pt 4):963-973.

141.Pandareesh MD, Anand T. Ergogenic effect of dietary L-carnitine and fat supplementation against exercise induced physical fatigue in Wistar rats. J Physiol Biochem. Dec 2013;69(4):799-809.

142.Huang A, Owen K. Role of supplementary L-carnitine in exercise and exercise recovery. Medicine and sport science. 2012;59:135-142.

143.Shimomura Y, Yamamoto Y, Bajotto G, Sato J, Murakami T, Shimomura N, . . . Mawatari K. Nutraceutical effects of branched-chain amino acids on skeletal muscle. The Journal of nutrition. Feb 2006;136(2):529s-532s.

144.Gibala MJ. Protein metabolism and endurance exercise. Sports medicine (Auckland, N.Z.). 2007;37(4-5):337-340.

145.Benardot D. Advanced Sports Nutrition. Champaign, Il.: Human Kinetics; 2006.

146.MSU. Montana State University. What Fuels Are Used For Exercise? https://btc.montana.edu/olympics/nutrition/fuel05.html. Copyright 1998. Accessed 4/7/2017.

147.Kanda A, Nakayama K, Fukasawa T, Koga J, Kanegae M, Kawanaka K, Higuchi M. Post-exercise whey protein hydrolysate supplementation induces a greater increase in muscle protein synthesis than its constituent amino acid content. The British journal of nutrition. Sep 28 2013;110(6):981-987.

148.Falavigna G, Alves de Araujo J, Jr., Rogero MM, Pires IS, Pedrosa RG, Martins E, Jr., . . . Tirapegui J. Effects of diets supplemented with branched-chain amino acids on the performance and fatigue mechanisms of rats submitted to prolonged physical exercise. Nutrients. Nov 2012;4(11):1767-1780.

149.Crowe MJ, Weatherson JN, Bowden BF. Effects of dietary leucine supplementation on exercise performance. European journal of applied physiology. Aug 2006;97(6):664-672.

150.Mittleman KD, Ricci MR, Bailey SP. Branched-chain amino acids prolong exercise during heat stress in men and women. Medicine and science in sports and exercise. Jan 1998;30(1):83-91.

151.Gualano AB, Bozza T, Lopes De Campos P, Roschel H, Dos Santos Costa A, Luiz Marquezi M, . . . Herbert Lancha Junior A. Branched-chain amino acids supplementation enhances exercise capacity and lipid oxidation during endurance exercise after muscle glycogen depletion. The Journal of sports medicine and physical fitness. Mar 2011;51(1):82-88.

152.Fujita S, Volpi E. Amino acids and muscle loss with aging. The Journal of nutrition. Jan 2006;136(1 Suppl):277s-280s.

153.Karlsson HK, Nilsson PA, Nilsson J, Chibalin AV, Zierath JR, Blomstrand E. Branched-chain amino acids increase p70S6k phosphorylation in human skeletal muscle after resistance exercise. American journal of physiology. Endocrinology and metabolism. Jul 2004;287(1):E1-7.

154.HCHS. Huntington College of Health Sciences. Smart Supplementation. A Primer on Branched Chain Amino Acids. http://www.hchs.edu/literature/BCAA.pdf. Copyright 2009. Accessed 4/7/2017.

155.Matsumoto K, Koba T, Hamada K, Sakurai M, Higuchi T, Miyata H. Branched-chain amino acid supplementation attenuates muscle soreness, muscle damage and inflammation during an intensive training program. The Journal of sports medicine and physical fitness. Dec 2009;49(4):424-431.

156.Shuler FD, Wingate MK, Moore GH, Giangarra C. Sports health benefits of vitamin d. Sports Health. Nov 2012;4(6):496-501.

157.Ogan D, Pritchett K. Vitamin D and the athlete: risks, recommendations, and benefits. Nutrients. Jun 2013;5(6):1856-1868.

158.Dahlquist DT, Dieter BP, Koehle MS. Plausible ergogenic effects of vitamin D on athletic performance and recovery. Journal of the International Society of Sports Nutrition. 2015;12:33.

159.Holick MF, Binkley NC, Bischoff-Ferrari HA, Gordon CM, Hanley DA, Heaney RP, . . . Weaver CM. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of clinical endocrinology and metabolism. Jul 2011;96(7):1911-1930.

160.Alt Med Rev. Monograph: L-Glutamine. Vol. 6; No. 4, pp. 406-410. Copyright 2001 by Thorne Research. http://www.altmedrev.com/publications/6/4/406.pdf. Accessed 4/7/2017.

161.UMHS. University of Michigan Health System. Glutamine. http://www.uofmhealth.org/health-library/hn-2856003#hn-2856003-uses. 3/24/2015. Accessed 4/7/2017.

162.Legault Z, Bagnall N, Kimmerly DS. The Influence of Oral L-Glutamine Supplementation on Muscle Strength Recovery and Soreness Following Unilateral Knee Extension Eccentric Exercise. International journal of sport nutrition and exercise metabolism. Oct 2015;25(5):417-426.

163.Tao KM, Li XQ, Yang LQ, Yu WF, Lu ZJ, Sun YM, Wu FX. Glutamine supplementation for critically ill adults. The Cochrane database of systematic reviews. 2014;9:Cd010050.

164.Stehle P, Kuhn KS. Glutamine: an obligatory parenteral nutrition substrate in critical care therapy. Biomed Res Int. 2015;2015:545467.

165.Mondello S, Italiano D, Giacobbe MS, Mondello P, Trimarchi G, Aloisi C, . . . Spina E. Glutamine-supplemented total parenteral nutrition improves immunological status in anorectic patients. Nutrition (Burbank, Los Angeles County, Calif.). Jun 2010;26(6):677-681.

166.Sasaki E, Umeda T, Takahashi I, Arata K, Yamamoto Y, Tanabe M, . . . Nakaji S. Effect of glutamine supplementation on neutrophil function in male judoists. Luminescence: the journal of biological and chemical luminescence. Jul-Aug 2013;28(4):442-449.

167.Song QH, Xu RM, Zhang QH, Shen GQ, Ma M, Zhao XP, . . . Wang Y. Glutamine supplementation and immune function during heavy load training. International journal of clinical pharmacology and therapeutics. May 2015;53(5):372-376.

168.Castell LM, Poortmans JR, Newsholme EA. Does glutamine have a role in reducing infections in athletes? European journal of applied physiology and occupational physiology. 1996;73(5):488-490.

169.Perrini S, Laviola L, Natalicchio A, Giorgino F. Associated hormonal declines in aging: DHEAS. Journal of endocrinological investigation. 2005;28(3 Suppl):85-93.

170.Barrou Z, Charru P, Lidy C. Dehydroepiandrosterone (DHEA) and aging. Arch Gerontol Geriatr. May-Jun 1997;24(3):233-241.

171.UMMC. University of Maryland Medical Center. Complementary and Alternative Medicine Guide. Supplement. Dehydroepiandrosterone. http://umm.edu/health/medical/altmed/supplement/dehydroepiandrosterone. 6/26/2014b. Accessed 4/6/2017.

172.Liu TC, Lin CH, Huang CY, Ivy JL, Kuo CH. Effect of acute DHEA administration on free testosterone in middle-aged and young men following high-intensity interval training. European journal of applied physiology. Jul 2013;113(7):1783-1792.

173.Hayes A, Cribb PJ. Effect of whey protein isolate on strength, body composition and muscle hypertrophy during resistance training. Current opinion in clinical nutrition and metabolic care. Jan 2008;11(1):40-44.

174.Miller PE, Alexander DD, Perez V. Effects of whey protein and resistance exercise on body composition: a meta-analysis of randomized controlled trials. J Am Coll Nutr. 2014;33(2):163-175.

175.Buckley JD, Thomson RL, Coates AM, Howe PR, DeNichilo MO, Rowney MK. Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. Journal of science and medicine in sport / Sports Medicine Australia. Jan 2010;13(1):178-181.

176.Farup J, Rahbek SK, Knudsen IS, de Paoli F, Mackey AL, Vissing K. Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino acids. Nov 2014;46(11):2503-2516.

177.Pennings B, Boirie Y, Senden JM, Gijsen AP, Kuipers H, van Loon LJ. Whey protein stimulates postprandial muscle protein accretion more effectively than do casein and casein hydrolysate in older men. The American journal of clinical nutrition. May 2011;93(5):997-1005.

178.Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiological reviews. Jan 2013;93(1):23-67.

179.Farup J, Rahbek SK, Vendelbo MH, Matzon A, Hindhede J, Bejder A, . . . Vissing K. Whey protein hydrolysate augments tendon and muscle hypertrophy independent of resistance exercise contraction mode. Scandinavian journal of medicine & science in sports. Oct 2014;24(5):788-798

180.Hellsten Y, Skadhauge L, Bangsbo J. Effect of ribose supplementation on resynthesis of adenine nucleotides after intense intermittent training in humans. American journal of physiology. Regulatory, integrative and comparative physiology. Jan 2004;286(1):R182-188.

181.Peveler WW, Bishop PA, Whitehorn EJ. Effects of ribose as an ergogenic aid. Journal of strength and conditioning research / National Strength & Conditioning Association. Aug 2006;20(3):519-522.

182.Dhanoa TS, Housner JA. Ribose: more than a simple sugar? Current sports medicine reports. Jul 2007;6(4):254-257.

183.Van Gammeren D FD, Antonio J. . The effects of four weeks of ribose supplementation on body composition and exercise performance in healthy, young, male recreational body builders: a double-blind, placebo controlled trial. Current Therapeutic Rsearch. 2002;63(8):486-495.

184.Flanigan R, MacCarter D, Shecterle LM, St Cyr JA. D-ribose aids fatigue in aging adults. Journal of alternative and complementary medicine (New York, N.Y.). May 2010;16(5):529-530.

185.Thompson J, Neutel J, Homer K, Tempero K, Shah A, Khankari R. Evaluation of D-ribose pharmacokinetics, dose proportionality, food effect, and pharmacodynamics after oral solution administration in healthy male and female subjects. J Clin Pharmacol. May 2014;54(5):546-554.

186.Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP. Effects of Short-Term Docosahexaenoic Acid Supplementation on Markers of Inflammation after Eccentric Strength Exercise in Women. J Sports Sci Med. Mar 2016;15(1):176-183.

187.Jouris KB, McDaniel JL, Weiss EP. The Effect of Omega-3 Fatty Acid Supplementation on the Inflammatory Response to eccentric strength exercise. J Sports Sci Med. 2011;10(3):432-438.

188.Jeromson S, Gallagher IJ, Galloway SD, Hamilton DL. Omega-3 Fatty Acids and Skeletal Muscle Health. Mar Drugs. Nov 2015;13(11):6977-7004.

189.Smith GI, Atherton P, Reeds DN, Mohammed BS, Rankin D, Rennie MJ, Mittendorfer B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: a randomized controlled trial. The American journal of clinical nutrition. Feb 2011;93(2):402-412.

190.Sarmiento A, Diaz-Castro J, Pulido-Moran M, Kajarabille N, Guisado R, Ochoa JJ. Coenzyme Q10 Supplementation and Exercise in Healthy Humans: A Systematic Review. Current drug metabolism. 2016;17(4):345-358.

191.Pala R, Orhan C, Tuzcu M, Sahin N, Ali S, Cinar V, . . . Sahin K. Coenzyme Q10 Supplementation Modulates NFkappaB and Nrf2 Pathways in Exercise Training. J Sports Sci Med. Mar 2016;15(1):196-203.

192.Kumar A, Kaur H, Devi P, Mohan V. Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacology & therapeutics. Dec 2009;124(3):259-268.

193.Gokbel H, Gul I, Belviranl M, Okudan N. The effects of coenzyme Q10 supplementation on performance during repeated bouts of supramaximal exercise in sedentary men. Journal of strength and conditioning research / National Strength & Conditioning Association. Jan 2010;24(1):97-102.

194.Cooke M, Iosia M, Buford T, Shelmadine B, Hudson G, Kerksick C, . . . Kreider R. Effects of acute and 14-day coenzyme Q10 supplementation on exercise performance in both trained and untrained individuals. Journal of the International Society of Sports Nutrition. 2008;5:8.

195.Armanfar M, Jafari A, Dehghan GR, Abdizadeh L. Effect of coenzyme Q10 supplementation on exercise-induced response of inflammatory indicators and blood lactate in male runners. Medical journal of the Islamic Republic of Iran. 2015;29:202.

196.Camic CL, Housh TJ, Zuniga JM, Hendrix RC, Mielke M, Johnson GO, Schmidt RJ. Effects of arginine-based supplements on the physical working capacity at the fatigue threshold. Journal of strength and conditioning research / National Strength & Conditioning Association. May 2010;24(5):1306-1312.

197.Campbell BI, La Bounty PM, Roberts M. The ergogenic potential of arginine. Journal of the International Society of Sports Nutrition. 2004;1(2):35-38.

198.McConell GK. Effects of L-arginine supplementation on exercise metabolism. Current opinion in clinical nutrition and metabolic care. Jan 2007;10(1):46-51.

199.Ranchordas MK WT. Effect of acute L-arginine supplementation on 20 km time trial performance in competitive male cyclists. British journal of sports medicine. 2011;45:A11.

200.Lomonosova YN, Shenkman BS, Kalamkarov GR, Kostrominova TY, Nemirovskaya TL. L-arginine supplementation protects exercise performance and structural integrity of muscle fibers after a single bout of eccentric exercise in rats. PloS one. 2014;9(4):e94448.

201.Huang CC, Tsai SC, Lin WT. Potential ergogenic effects of L-arginine against oxidative and inflammatory stress induced by acute exercise in aging rats. Exp Gerontol. Jun 2008;43(6):571-577.

202.Boozer CN, Nasser JA, Heymsfield SB, Wang V, Chen G, Solomon JL. An herbal supplement containing Ma Huang-Guarana for weight loss: a randomized, double-blind trial. International journal of obesity and related metabolic disorders: journal of the International Association for the Study of Obesity. Mar 2001;25(3):316-324.

203.Burns J, Yokota T, Ashihara H, Lean ME, Crozier A. Plant foods and herbal sources of resveratrol. Journal of agricultural and food chemistry. May 22 2002;50(11):3337-3340.

204.Polley KR, Jenkins N, O'Connor P, McCully K. Influence of exercise training with resveratrol supplementation on skeletal muscle mitochondrial capacity. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. Jan 2016;41(1):26-32.

205.Mohammadi Sartang M, Mazloom Z, Sohrabi Z, Sherafatmanesh S, Boldaji RB. Resveratrol supplementation and plasma adipokines concentrations? A systematic review and meta-analysis of randomized controlled trials. Pharmacological research: the official journal of the Italian Pharmacological Society. Jan 13 2017.

206.Diaz M, Degens H, Vanhees L, Austin C, Azzawi M. The effects of resveratrol on aging vessels. Exp Gerontol. Dec 01 2016;85:41-47.

207.Oyenihi OR, Oyenihi AB, Adeyanju AA, Oguntibeju OO. Antidiabetic Effects of Resveratrol: The Way Forward in Its Clinical Utility. Journal of Diabetes Research. 2016;2016:9737483.

208.Chen S, Zhao X, Ran L, Wan J, Wang X, Qin Y, . . . Mi M. Resveratrol improves insulin resistance, glucose and lipid metabolism in patients with non-alcoholic fatty liver disease: a randomized controlled trial. Dig Liver Dis. Mar 2015;47(3):226-232.

209.Menzies KJ, Singh K, Saleem A, Hood DA. Sirtuin 1-mediated effects of exercise and resveratrol on mitochondrial biogenesis. The Journal of biological chemistry. Mar 8 2013;288(10):6968-6979.

210.Wu RE, Huang WC, Liao CC, Chang YK, Kan NW, Huang CC. Resveratrol protects against physical fatigue and improves exercise performance in mice. Molecules. 2013;18(4):4689-4702.

211.Dolinsky VW, Jones KE, Sidhu RS, Haykowsky M, Czubryt MP, Gordon T, Dyck JR. Improvements in skeletal muscle strength and cardiac function induced by resveratrol during exercise training contribute to enhanced exercise performance in rats. The Journal of physiology. Jun 1 2012;590(11):2783-2799.

212.Lin-Na S, Yong-Xiu S. Effects of polysaccharides from Gynostemma pentaphyllum (Thunb.), Makino on physical fatigue. African journal of traditional, complementary, and alternative medicines: AJTCAM / African Networks on Ethnomedicines. 2014;11(3):112-117.

213.Nguyen PH, Gauhar R, Hwang SL, Dao TT, Park DC, Kim JE, . . . Oh WK. New dammarane-type glucosides as potential activators of AMP-activated protein kinase (AMPK) from Gynostemma pentaphyllum. Bioorganic & medicinal chemistry. Nov 1 2011;19(21):6254-6260.

214.Chi A, Tang L, Zhang J, Zhang K. Chemical composition of three polysaccharides from Gynostemma pentaphyllum and their antioxidant activity in skeletal muscle of exercised mice. International journal of sport nutrition and exercise metabolism. Dec 2012;22(6):479-485.

215.Chen S, Li Z, Krochmal R, Abrazado M, Kim W, Cooper CB. Effect of Cs-4 (Cordyceps sinensis) on exercise performance in healthy older subjects: a double-blind, placebo-controlled trial. Journal of alternative and complementary medicine (New York, N.Y.). May 2010;16(5):585-590.

216.Chen CY, Hou CW, Bernard JR, Chen CC, Hung TC, Cheng LL, . . . Kuo CH. Rhodiola crenulata- and Cordyceps sinensis-based supplement boosts aerobic exercise performance after short-term high altitude training. High altitude medicine & biology. Sep 2014;15(3):371-379.

217.Panda AK, Swain KC. Traditional uses and medicinal potential of Cordyceps sinensis of Sikkim. Journal of Ayurveda and integrative medicine. Jan 2011;2(1):9-13.

218.Kumar R, Negi PS, Singh B, Ilavazhagan G, Bhargava K, Sethy NK. Cordyceps sinensis promotes exercise endurance capacity of rats by activating skeletal muscle metabolic regulators. Journal of ethnopharmacology. Jun 14 2011;136(1):260-266.

219.Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, . . . Zhou Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Journal of ethnopharmacology. Jul 20 2010;130(2):421-423.

220.Oliynyk S, Oh S. Actoprotective effect of ginseng: improving mental and physical performance. Journal of ginseng research. Apr 2013;37(2):144-166.

221.Chen CK, Muhamad AS, Ooi FK. Herbs in exercise and sports. Journal of physiological anthropology. 2012;31:4.

222.Bucci LR. Selected herbals and human exercise performance. The American journal of clinical nutrition. Aug 2000;72(2 Suppl):624s-636s.

223.Wang LC, Lee TF. Effect of ginseng saponins on exercise performance in non-trained rats. Planta medica. Mar 1998;64(2):130-133.

224.Zhao W, Zhang X, Wang W, Zhang L. [Experimental study for the anti-fatigue effect of ginseng general ginsenosides P.E. in vivo]. Wei sheng yan jiu = Journal of hygiene research. Mar 2009;38(2):184-187.

225.Nocerino E, Amato M, Izzo AA. The aphrodisiac and adaptogenic properties of ginseng. Fitoterapia. Aug 2000;71 Suppl 1:S1-5.

226.Kim SH, Park KS, Chang MJ, Sung JH. Effects of Panax ginseng extract on exercise-induced oxidative stress. The Journal of sports medicine and physical fitness. Jun 2005;45(2):178-182.

227.Liang MT, Podolka TD, Chuang WJ. Panax notoginseng supplementation enhances physical performance during endurance exercise. Journal of strength and conditioning research / National Strength & Conditioning Association. Feb 2005;19(1):108-114.

228.Jung K, Kim IH, Han D. Effect of medicinal plant extracts on forced swimming capacity in mice. Journal of ethnopharmacology. Jul 2004;93(1):75-81.

229.Jia L, Zhao Y, Liang XJ. Current evaluation of the millennium phytomedicine- ginseng (II): Collected chemical entities, modern pharmacology, and clinical applications emanated from traditional Chinese medicine. Current medicinal chemistry. 2009;16(22):2924-2942.

230.Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, . . . Kim DH. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. Journal of ginseng research. Apr 2015;39(2):183-187.

231.Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside R(c) by human intestinal bacteria and its related antiallergic activity. Biological & pharmaceutical bulletin. Jun 2002;25(6):743-747.

232.Jin H, Seo JH, Uhm YK, Jung CY, Lee SK, Yim SV. Pharmacokinetic comparison of ginsenoside metabolite IH-901 from fermented and non-fermented ginseng in healthy Korean volunteers. Journal of ethnopharmacology. Jan 31 2012;139(2):664-667.

233.Hasegawa H. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. Journal of pharmacological sciences. Jun 2004;95(2):153-157.

234.Noreen EE, Buckley JG, Lewis SL, Brandauer J, Stuempfle KJ. The effects of an acute dose of Rhodiola rosea on endurance exercise performance. Journal of strength and conditioning research / National Strength & Conditioning Association. Mar 2013;27(3):839-847.

235.Duncan MJ, Clarke ND. The Effect of Acute Rhodiola rosea Ingestion on Exercise Heart Rate, Substrate Utilisation, Mood State, and Perceptions of Exertion, Arousal, and Pleasure/Displeasure in Active Men. Journal of sports medicine (Hindawi Publishing Corporation). 2014;2014:563043.

236.Lee FT, Kuo TY, Liou SY, Chien CT. Chronic Rhodiola rosea extract supplementation enforces exhaustive swimming tolerance. The American journal of Chinese medicine. 2009;37(3):557-572.

237.De Bock K, Eijnde BO, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance. International journal of sport nutrition and exercise metabolism. Jun 2004;14(3):298-307.

238.Parisi A, Tranchita E, Duranti G, Ciminelli E, Quaranta F, Ceci R, . . . Sabatini S. Effects of chronic Rhodiola Rosea supplementation on sport performance and antioxidant capacity in trained male: preliminary results. The Journal of sports medicine and physical fitness. Mar 2010;50(1):57-63.

239.Walker TB, Robergs RA. Does Rhodiola rosea possess ergogenic properties? International journal of sport nutrition and exercise metabolism. Jun 2006;16(3):305-315.

240.Slater GJ, Jenkins D. Beta-hydroxy-beta-methylbutyrate (HMB) supplementation and the promotion of muscle growth and strength. Sports medicine (Auckland, NZ). 2000;30(2):105-116.

241.Rittig N, Bach E, Thomsen HH, et al. Anabolic effects of leucine-rich whey protein, carbohydrate, and soy protein with and without beta-hydroxy-beta-methylbutyrate (HMB) during fasting-induced catabolism: A human randomized crossover trial. Clin Nutr. 2017;36(3):697-705.

242.Asadi A, Arazi H, Suzuki K. Effects of beta-Hydroxy-beta-methylbutyrate-free Acid Supplementation on Strength, Power and Hormonal Adaptations Following Resistance Training. Nutrients. 2017;9(12).

243.Zanchi NE, Gerlinger-Romero F, Guimaraes-Ferreira L, et al. HMB supplementation: clinical and athletic performance-related effects and mechanisms of action. Amino Acids. 2011;40(4):1015-1025.

244.Deutz NE, Pereira SL, Hays NP, et al. Effect of beta-hydroxy-beta-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr. 2013;32(5):704-712.

245.Knitter AE, Panton L, Rathmacher JA, Petersen A, Sharp R. Effects of β-hydroxy-β-methylbutyrate on muscle damage after a prolonged run. Journal of Applied Physiology. 2000;89(4):1340-1344.

246.Stout JR, Smith-Ryan AE, Fukuda DH, et al. Effect of calcium β-hydroxy-β-methylbutyrate (CaHMB) with and without resistance training in men and women 65+yrs: A randomized, double-blind pilot trial. Experimental Gerontology. 2013;48(11):1303-1310.

247.Wilson JM, Lowery RP, Joy JM, et al. β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. British Journal of Nutrition. 2013;110(3):538-544.

248.Rowlands DS, Thomson JS. Effects of β-Hydroxy-β-Methylbutyrate Supplementation During Resistance Training on Strength, Body Composition, and Muscle Damage in Trained and Untrained Young Men: A Meta-Analysis. The Journal of Strength & Conditioning Research. 2009;23(3):836-846.

249.Horowitz AM, Fan X, Bieri G, et al. Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the aged brain. Science (New York, NY). 2020;369(6500):167-173.