SUBSCRIBE

血糖管理与糖尿病xuetangguanliyutangniaobing

糖尿病的营养策略:铬、纤维素、葡甘聚糖

时间:2021-04-13 16:10 阅读:9107 来源:朴诺健康研究院

同义索引:高血糖

  1. 简介 

  2. 一览表 

  3. 治疗 

  4. 饮食习惯的改变

  5. 生活方式的改变

  6. 营养补充剂

  7. 草药 

  8. 整体疗法

  9. 参考文献


糖尿病是一种代谢性疾病,患者由于胰岛素生成或利用不足,从而导致碳水化合物代谢障碍。


众所周知,葡萄糖是我们人体用于提供能量的重要糖类。而糖尿病患者一般不能正常利用体内的葡萄糖。因此,葡萄糖就会聚集在血液中,从而导致血糖升高。但是与此同时,机体内的细胞又急需葡萄糖提供能量,因此这之间产生了严重的矛盾。此外,糖尿病会导致伤口愈合缓慢,感染风险升高,以及很多其它器官问题,可能会累及眼部、肾脏、神经和心血管等等。


糖尿病共有两种类型。儿童时期开始发病的糖尿病也被称为“Ⅰ型糖尿病“,或“胰岛素依赖型糖尿病”。在Ⅰ型糖尿病中,患者的胰腺不能合成葡萄糖加工过程中所必需的胰岛素。一般来说,天然疗法不能治愈Ⅰ型糖尿病,但是可能有助于机体更好地吸收体外注射的胰岛素。在使用该文所介绍的任何草药、营养补充剂、或进行饮食调整前,必需先与开胰岛素的处方医生进行认真沟通合作,这一点对糖尿病患者来说是非常重要的。如果本文中某种推荐疗法使机体确实变得更易吸收外来胰岛素,就需要及时由主治医生来决定,是否有必要对胰岛素的剂量进行调整。


成年后开始发病的糖尿病也称作“Ⅱ型糖尿病”,或“非胰岛素依赖型糖尿病”。在Ⅱ型糖尿病患者中,胰腺所合成的胰岛素量是正常的,但是机体在利用胰岛素的过程中出现问题。Ⅱ型糖尿病常常对天然疗法反应良好。


糖尿病患者一般发生心脏病和动脉硬化的危险性很高。另外,如果患者的高半胱氨酸水平也很高时,他们的死亡率也会随之升高。[1]


糖尿病的辅助疗法


分类营养补充剂草药
首选

α叶酸

啤酒酵母 (每汤匙可提供将近60微克铬)

月见草油

纤维

葡甘露聚糖

胡椒 (适用于糖尿病神经病变患者,局部使用)

葫芦巴 (种子)

洋车前草

次选

生物素

辅酶Q10

左旋肉碱

复合维生素矿物质 (用于预防感染)

维生素B1 (硫胺)

维生素B6 (仅适用于妊娠期糖尿病)

维生素C

维生素 E (适用于预防早产儿晶体后纤维膜增生症,以及预防糖尿病视网膜病变)

锌 (更适用于伴有特定物质缺乏症的患者)

芦荟

西洋参

亚洲人参

越桔

苦瓜

匙羹藤

柠檬罗勒 (种子)

圣罗勒 (叶)

洋葱

其它

鱼油 (EPA/DHA)

以下均适用于糖尿病视网膜病变:

硒, 维生素A,维生素 C和维生素 E (联合用药)

低聚果糖 (FOS)

肌醇

中碳链甘油三酯

槲皮素

淀粉克星

牛磺酸

钒 (适用于Ⅱ型糖尿病)

维生素 B12

维生素 B3 (烟酰胺)

维生素 D

维生素 E (适用于伴有无β脂蛋白血症的患者)

刺五加

银杏

槲寄生

橄榄叶

灵芝

首选 有可靠和相对一致的科研数据证明其对健康有显著改善。

次选 各有关科研结果相互矛盾、证据不充分或仅能初步表明其可改善健康状况或效果甚微。

其它 对草药来说,仅有传统用法可支持其应用,但尚无或仅有少量科学证据可证明其疗效。对营养补充剂来说,无科学证据支持和/或效果甚微。


医药治疗


Ⅰ型糖尿病患者以及部分Ⅱ型糖尿病患者可用胰岛素进行治疗。虽然大多数胰岛素属于非处方药,但是患者在自己用药时也要谨慎,应先对病情进行准确诊断,并严格遵照医生医嘱。应根据发作和病程选用胰岛素,其中短效的包括常规型胰岛素(Humulin-R, Novolin-R),中效的包括NPH 胰岛素(Humulin N, Novolin N) 和lente 胰岛素(Humulin L, Novolin L);长效的包括ultralente胰岛素 (Humulin U Ultralente)。口服型葡萄糖片(例如B-D Glucose)和凝胶(Glutose, Insta-Glucose和Insulin Reaction)可用来治疗胰岛素过量所引起的低血糖症。     


属于处方药的胰岛素制剂包括胰岛素类似物注射剂(Humalog)。专门用以治疗Ⅱ型糖尿病的常用处方药包括磺酰脲类降血糖药,例如格列吡嗪(glipizide,Glucotrol, Glucotrol XL),格列美脲(glimepiride,Amaryl)和优降糖(glyburide,DiaBeta, Micronase, Glynase PresTab);双胍类降血糖药,例如二甲双胍(metformin, Glucophage); Meglitinide类降血糖药,例如瑞格列奈(repaglinide, Prandin);以及噻唑烷二酮类(thiazolidinediones)降血糖药,例如罗格列酮 (rosiglitazone,Avandia) 和吡格列酮(pioglitazone,Actos)。注射型胰高血糖素(Glucagon Emergency Kit)用于治疗由胰岛素过量引起的低血糖症。



可能有益的饮食习惯


碳水化合物


碳水化合物的摄入与Ⅱ型糖尿病之间的关系非常复杂。当机体摄取碳水化合物后,为了能保持正常的血糖水平,机体会增加对胰岛素的需求量。因此,总碳水化合物摄入量很高的饮食并不一定会增加发生Ⅱ型糖尿病的风险。[2, 3]研究发现,如果饮食中有大量糖类,可能会使原来没有糖尿病的动物[4]及正常人[5]的葡萄糖耐受性减弱。但是,在该研究中所应用的糖量比人们平时饮食中所摄取的糖量要大很多。


几年前,一位研究者作了一项以也门犹太人为受试者的研究,这些犹太人从一个不吃糖的地区迁徙到了另一个食糖地区后,糖尿病患者人数有所上升。[6]但是,也不排除其它因素,例如体重增加等,来解释该人群中糖尿病发生率的原因。[7]另外,其它研究并未发现糖摄入量与葡萄糖不耐性之间有必然关系。[8]


摄入含有碳水化合物的食物,无论是高糖还是高淀粉食物(比如面包、马铃薯、加工过的早餐谷类食品、米饭等),都能使血糖水平和胰岛素水平暂时升高。[9]食物使血糖升高的作用,即食物的“血糖指数”,与人体吸收食物中碳水化合物的速度紧密相关。很多淀粉类食物的血糖指数与蔗糖(即用于烹调的食糖)差不多。[10]摄入大量血糖指数较高的食物,会导致Ⅱ型糖尿病发病率升高。[11, 12]另一方面,即使饮食中有大量富含碳水化合物的食物,但是如果这些食物的血糖指数较低,那么发生Ⅱ型糖尿病的风险也不是很大。[13, 14, 15]比如豆类、豌豆、水果和燕麦等,均属于这类食物。这很有可能与它们所富含的可溶纤维有关,因为我们都知道,可溶纤维对于人体的健康使很有好处的。


糖尿病会破坏人体用以控制血糖水平的代谢过程。虽然短期高糖饮食在糖尿病患者中并不能引起血糖升高,但是健康专家仍建议糖尿病患者控制糖摄入量。[16,17,18]目前,根据美国糖尿病协会(ADA)治疗指南[19],只要患者的血中葡萄糖、甘油三酯和胆固醇的水平正处于接近正常值的阶段,那么摄入适量的糖类还是被允许的。


很多医生建议糖尿病患者少吃快餐和加工食品,以高纤维、全麦食品代替。这样可降低饮食的总糖量,并同时可以增加维生素、矿物质和纤维的摄入量。另外,其他权威人士也推荐采用低糖饮食来控制病情。[20]


高纤维饮食


在病情已得到控制的糖尿病患者中,高纤维饮食比美国糖尿病协会(ADA)所推荐的饮食更有效,其控制血糖水平的效果可与口服型抗糖尿病药媲美。[21]在该试验中,患者仅摄入天然高纤维的食物,比如绿叶蔬菜、格兰诺拉麦片和水果(其纤维摄入水平已超过美国糖尿病协会所推荐的量),而不能摄入其它类型食物。所有受试者中,一部分采用美国糖尿病协会所推荐的饮食(每日可提供24克纤维),另一部分采用上述高纤维饮食(每日提供50克纤维)。6个月后,对两组的血糖、胰岛素、胆固醇、甘油三酯以及其它指标进行检测。经过24小时的血糖水平检测后发现,高纤维饮食组的受试者平均血糖水平比美国糖尿病协会推荐饮食组低10%。另外,前者的胰岛素水平比后者低12%,表明前一种饮食有助于提高机体的胰岛素敏感性。除此之外,前者的总胆固醇、甘油三酯、低密度脂蛋白胆固醇均有显著下降。而且,糖基化的血红蛋白(长期高血糖水平的度量指标)也略微下降。


高纤维补充剂,例如洋车前草,[22, 23]豆脂粉(发现于豆类)、[24]果胶(来自于水果),[25]燕麦糠、[26]和葡甘露聚糖[27, 28]均可改善葡萄糖耐受性。另外,每日摄取30至90克胡芦巴种子粉也可得到类似效果。[29, 30]但是,目前对于纤维的有效摄入量还不是很清楚,也缺乏相关的长期研究,因此,仍有很多研究者对纤维的效果表示质疑。[31]尽管如此,大多数医生还是建议糖尿病患者多吃高纤维食物,主要是一些水果、蔬菜、种子、燕麦和全麦食品。


鱼类


多吃鱼类也可预防并抵抗糖尿病。[32]相比较于仅仅致力于葡萄糖和胰岛素代谢水平以及高胆固醇水平的改善,将鱼作为减肥餐的主角显得更为直接而有效。[33]一般来说,素食者患Ⅱ型糖尿病的风险较低。[34]当有糖尿病神经病变的患者将自己的饮食转变成严格素食饮食(无肉、奶制品或蛋类),仅仅几天后病情就出现了改善。[35]甚至在一项试验中,21位患者中有17位的疼痛完全消失。[36]另外,肉类脂肪和奶类脂肪摄入过多可诱发糖尿病患者的“头号杀手”——心脏病。


素食者一般比肉食者所摄入的蛋白质少。较低的蛋白质摄入量可降低由糖尿病引起的肾脏损伤,[37, 38]并可改善葡萄糖耐受性。[39]但是,血中胰岛素水平较高(也常见于糖尿病患者)的13位肥胖男性,在采用高蛋白、低碳水化合物的饮食后,减肥效果显著,而且胰岛素水平也得到有效控制,其效果明显优于仅采用低碳水化合物饮食的受试者。[40]无论是转变成低蛋白饮食或高蛋白饮食,应先向医生进行相关咨询。


脂肪 


高脂肪,尤其是高饱和脂肪酸的饮食,会减弱机体的葡萄糖耐受性,并增加发生Ⅱ型糖尿病的风险性,[41, 42, 43, 44]但是这并不仅仅是食用高脂食物后导致体重增重而引起的。饱和脂肪酸主要见于肉类脂肪、奶类脂肪、红肉以及家禽的皮。相反地,如果饮食中的单不饱和脂肪酸较高,那么葡萄糖不耐性将会有所改善,[45, 46]这对糖尿病患者是非常有益的。[47]一般来说,要求Ⅰ型糖尿病患者完全改变原有饮食中的脂肪和碳水化合物的比例,是很难做到的。但是,调整膳食脂肪的“品质”还是可以实现的。在Ⅰ型糖尿病成人患者中,增加单不饱和脂肪酸的比例可使血糖控制和胆固醇水平得到显著改善。[48]在饮食中引入单不饱和脂肪酸的最简单的方法是食用橄榄油。但是体重超重的患者需谨慎食用,因为橄榄油的卡路里很高。


为了预防Ⅰ型糖尿病,应该让孩子少喝奶制品吗?


在全世界儿童中,相比较于能量来源主要是蔬菜的儿童,那些能量主要来自于奶制品(或者肉类)的儿童患Ⅰ型糖尿病的几率明显更高。[49]在奶制品消费量很高的国家中,Ⅰ型糖尿病的发病率也相对较高。[50]动物研究也同样表明,避免摄入奶制品可有效预防Ⅰ型糖尿病。[51]奶类中含有一种特殊的蛋白质,它与胰腺中的某种蛋白质紧密相关。一些研究者认为,对奶制品过敏的儿童可能会产生一种攻击胰腺的抗体,从而导致Ⅰ型糖尿病。若干项研究表明,牛奶消费量与儿童中Ⅰ型糖尿病的发病率确实有联系。[52, 53, 54, 55]但是,也有其它研究结果却并不认同这一点。[56, 57]其中某项研究甚至显示,大量摄入奶制品可使儿童预防Ⅰ型糖尿病。[58]出现这种矛盾的原因之一可能是牛奶蛋白(即“酪蛋白”)的基因链不同,从而使发生糖尿病的风险也不尽相同。[59]在一部分喝牛奶的儿童体内,会产生酪蛋白的抗体。研究者猜测,这些抗体可与生成胰岛素的胰腺细胞发生交叉作用,也就是说这些抗体会与胰腺细胞的表面抗原发生抗原抗体反应,从而导致胰腺损伤。[60]


Ⅰ型糖尿病患者的免疫问题可能与其它过敏也有关系,[61]因此,仅仅减少奶制品的摄入量,其意义可能不是很大。[62]如果在在婴幼儿早期就开始使用牛奶配方喂养,那么Ⅰ型糖尿病的发病率可能会有所上升,但是也有一些研究得出相反的结论。[63, 64]一项以芬兰儿童为受试者的研究中,在出生未满3个月时就开始牛奶配方喂养的婴儿,相比较于3个月后才开始牛奶配方喂养的婴儿,其将来发生Ⅰ型糖尿病的风险有所上升。[65]该研究进一步支持了“在婴幼儿时期应放弃奶制品喂养”,尤其对于家族中有Ⅰ型糖尿病患者的儿童更有意义。最近又有研究认为,婴幼儿时期的奶制品消耗量与Ⅱ型糖尿病发病率之间也存在着联系。[66]


可能有益的生活方式


减肥


大多数Ⅱ型糖尿病患者都体重超重。[67]腹部过度肥胖虽然不能使胰岛素合成停止,[68]但是确实可使机体对胰岛素的敏感性降低。[69]超重甚至可使健康人出现糖尿病前去综合征。[70]而减肥可有效解决这个问题。[71]大多数研究显示,减肥对Ⅱ型糖尿病有改善作用。[72, 73, 74]


对于体重增加过多的婴儿,其在儿童时期发生Ⅰ型糖尿病的风险性将增加1.5倍。[75]同时,超重也会增加机体对胰岛素的需求量。因此,Ⅰ型糖尿病患者应尽量将体重控制在正常范围之内,并坚持长期保持。


锻炼有助于体脂的燃烧[76],并改善胰岛素敏感性。[77]有锻炼习惯的人群患Ⅱ型糖尿病的可能性低于不锻炼的人群。[78]经常锻炼的Ⅰ型糖尿病患者对胰岛素的需求量相对较少。[79]但是,锻炼可能会导致低血糖,或者甚至有时会使血糖升高。[80]并且,一项初步研究显示,在Ⅰ型糖尿病患者中,长期体能运动与控制血糖之间并无关联。[81]因此,糖尿病患者在未向医生进行相关咨询之前,不应进行剧烈的锻炼。


饮酒


健康人适量饮酒可改善葡萄糖耐受性。[82, 83, 84, 85]但是,对于老年人[86]和糖尿病患者[87]来说,喝酒会使葡萄糖耐受性降低。并且,喝酒的糖尿病患者发生眼病[88]和神经损伤[89]的风险也比较高。


那么到底喝多少酒才是适量的呢?对于健康人,少量喝酒并不会使糖尿病发病风险上升,而且甚至可能会降低Ⅱ型糖尿病的发病率。[90]但是,酗酒确实可使糖尿病发病率显著增高,因此,为了自己的健康,酗酒者必须尽早引起注意,改掉酗酒的坏习惯。[91]另外,患者应将自己的酒精摄入量控制在每天两口之内。[91]值得注意的是,对于之前并未出现酒精中毒、肝病(比如肝硬化)、胃炎、溃疡和其它及其它酒精性疾病的糖尿病患者,如果他们彻底放弃饮酒,可能不能达到预期的效果,甚至可能会起到相反的作用。患有Ⅱ性糖尿病的老年人保持每天适量喝酒的习惯后发现,他们的心脏病死亡率明显低于不喝酒的老年患者。[92]这个结果看似令人惊讶,其实却合乎情理,因为我们都知道,适量喝酒具有预防心脏病的作用。而心脏病是糖尿病患者的“头号杀手”,因此该发现对于糖尿病患者是非常有意义的。另有一项研究显示,相比较于有适量喝酒习惯的人群,平时不喝酒的人发生Ⅱ型糖尿病的几率更高。[93]


吸烟


吸烟的糖尿病患者发生肾脏损伤[94]、心脏病[95]和其它糖尿病相关疾病的风险较高。吸烟者的糖尿病病情更易进展恶化[96]。由此,戒烟是非常有必要的。虽然大多数医生认为,对于Ⅰ向糖尿病患者来说,进行自我血糖监测(SMBG)是很有必要的,但是,他们并不认同自我血糖监测对Ⅱ型糖尿病患者的有效性和必要性。一项临床对照试验发现,家用血糖监测试纸对Ⅱ性糖尿病患者无反应。[97]因此,自我血糖监测对Ⅱ性糖尿病患者的有效性是值得怀疑的,应作进一步严格的高质量试验加以检验。[98]


自我血糖监测


自我血糖监测的提倡者(例如美国糖尿病协会)表明,经常进行自我血糖监测的糖尿病患者,其疾病治疗进程发生很大的改变,从而可实现长期维持降血糖的成果。[99]并且,这些发现也得到一些医学著作的支持。[100]但是有些反对者指出,不加任何选择地普遍使用自我血糖监测,必然会增加患者的巨大医疗开支,因此其使用价值是有待讨论的。[101]美国糖尿病协会承认,自我血糖监测的准确性依赖于仪器和技术。技术误差以及对照设置不足会导致监测结果不准确。[102]但是,如果能准确使用自我血糖监测,患者将会得到全方位改善。[103]药剂师和医生会教给糖尿病患者一些必要的技巧,这样可有效提高患者准确自我监测血糖的能力。


可能有益的营养补充剂


多种维生素、矿物质、氨基酸和其它补充剂可能会有助于改善糖尿病的相关症状及缺乏。


复合型维生素矿物质补充剂


一项双盲试验表明,中年及老年糖尿病患者服用复合型维生素矿物质补充剂一年后,可使感染风险下降超过80%。[104]



从1853年起到现在,已有多份医学报告指出,富含金属铬的啤酒酵母(每日9克)有助于治疗糖尿病。[105, 106]最近几年,越来越多关于铬的作用受到研究者的关注,它可使葡萄糖不耐受的患者以及Ⅰ型和Ⅱ型糖尿病、妊娠期糖尿病和类固醇引起的糖尿病患者改善血糖水平以及血糖相关问题。[107, 108] 铬可通过提高机体对胰岛素的敏感性,从而使Ⅰ型和Ⅱ型糖尿病患者的葡萄糖耐受性得到改善。[109, 110]另外,对于出现前驱糖尿病症状的葡萄糖不耐受的患者,[111]以及妊娠期糖尿病女性,[112]铬也可以使机体利用葡萄糖的能力得到改善。甚至对于健康人来说,铬也是大有裨益的,[113]但是仅仅在铬与每日100毫克尼亚新联合服用时才有明显效果。[114]除此之外,铬还可能有降低总胆固醇、低密度脂蛋白(LDL)胆固醇以及甘油三酯的作用,而我们都知道,这些都是诱发心脏病的危险因子。[115, 116]


一些报告指出,铬补充剂对糖尿病患者并无效果。[117, 118, 119]所有这些试验中所用的铬剂量为200微克或更少,一般来说,这个剂量对于糖尿病患者是不够的,尤其当铬以人体不易吸收的形式进行补充。试验中常用的铬剂量为每日200微克,但是也曾经使用过每日1000微克的剂量。[120]而目前很多医生推荐患者以每日1000毫克的剂量进行补充。[121]


补充铬或啤酒酵母可潜在地提高糖尿病治疗药物(例如胰岛素或其它降血糖剂)的疗效,甚至有可能会造成低血糖。因此,正在服用这些药物的糖尿病患者应在医生的监督指导下补充铬或啤酒酵母。



相比较于健康人,糖尿病患者体内的镁水平较低。[122]双盲研究指出,补充镁可解决这些问题。[123]对于Ⅱ型糖尿病老年患者,镁补充剂可促进胰岛素的生成。[124]但是,Ⅱ型糖尿病患者每日补充500毫克后并无明显效果,但是将剂量加倍之后,确实可观察到一定的改善。[125]值得注意的是,未患糖尿病的老年人在镁补充剂的作用下,胰岛素生成量也有所上升。[126,127]另外,Ⅰ型糖尿病患者补充镁制剂后,机体对于胰岛素的需求量减少了。[128]但是,在Ⅱ型糖尿病患者中,胰岛素需求量并未发生明显改变,血糖水平也未见任何改善。[129]


由糖尿病引起的眼部病变在镁缺乏的Ⅰ型糖尿病患者中更易发生。[130]在镁缺乏的Ⅰ型糖尿病孕妇中,镁缺乏可能还会诱发与Ⅰ型糖尿病相关的自发流产和新生儿缺陷。[131]美国糖尿病协会承认“镁缺乏与胰岛素耐受性之间存在密切相关性”,但并不认为镁缺乏是糖尿病的危险因子之一。[132]但是,还是有很多医生推荐肾功能正常的糖尿病患者每日补充200至600毫克镁。


α叶酸


α叶酸是一种天然的强力抗氧化剂。初步试验[133, 134]和双盲试验[135,136,137,138,139]发现,每日补充600至1200毫克叶酸可有效改善胰岛素敏感性以及糖尿病神经病变的症状。另外,每日补充600毫克α叶酸18个月,可使Ⅰ型和Ⅱ型糖尿病患者发生肾损伤的进程减慢。[140]


月来见油


一项双盲研究中,每日补充4克月来见油,六个月后,可有效改善神经功能,并缓解糖尿病神经病变的疼痛症状。[141]


葡甘露聚糖


葡甘露聚糖是一种提取自蒟蒻根的水溶性膳食纤维。葡甘露聚糖可延长胃排空时间,从而使食糖在体内被慢慢吸收。因此,该物质可减少餐后血糖的升高量。[142]因此,如果在糖尿病患者的食物中加入葡甘露聚糖,那么他们的餐后血糖水平就不会飞速上升,并且糖尿病的各项指标得到很有效的控制,[143]而这一点在临床试验中也得到证明。[144, 145, 146]另一项初步研究报告认为,葡甘露聚糖可能对妊娠期糖尿病患者也有所帮助。[147]他们在孕妇的每100卡路里饮食中加入500至700毫克葡甘露聚糖,其结果相当成功。


维生素E


在维生素E水平较低的人群中,发生Ⅰ型[148]和Ⅱ型[149]糖尿病的可能性更高。大多数[150, 151, 152]但并非所有[153]双盲试验显示,维生素E补充剂可改善Ⅰ型和Ⅱ型糖尿病患者的葡萄糖耐受性。除此之外,它同样能使不患有糖尿病的老年人的葡萄糖耐受性得到改善。[154, 155]若要观察到明显效果,一般需要补充3个月或更长时间。并且,每日维生素E的摄入量至少为900国际单位。


某项试验发现,维生素E对Ⅱ型糖尿病患者的葡萄糖不耐性没有疗效,但是由糖尿病引起的神经损伤在补充维生素E六个月后逐渐好转。[156]动物[157]和人类初步[158]研究数据表明,维生素E补充剂可以预防糖尿病视网膜病和肾病,即糖尿病分别累及到眼睛和肾脏后产生的严重并发症,但是目前尚无长期的人类试验可证明这些初步发现。

糖基化是度量糖尿病严重程度的重要指数。它代表着体内有多少糖与蛋白质异常结合。很多[159, 160, 161, 162, 163]但并非所有[164, 165, 166]研究显示,维生素E补充剂可缓解糖基化的问题。


一份报告表明,对于肥胖的糖尿病患者,维生素E可降低偏头痛耐受性。[167]各个研究报告之间之所以会出现差异的原因,目前尚属未知。


对于吸烟的糖尿病患者,补充维生素E可降低发生大脑梗死(中风的一种类型)的风险性。对于芬兰吸烟者的大规模研究综述得出结论:小剂量维生素E(每日500国际单位)对患有糖尿病(或高血压)的吸烟者有益,并且不会增加出血风险性。[168]


维生素C


Ⅰ型糖尿病患者中,维生素C水平一般较低。[169]与维生素E一样,维生素C可减弱糖基化作用。[170]维生素C同样也可以降低患者体内的山梨糖醇。[171]而 山梨糖醇是一种积聚于糖尿病患者的神经细胞、肾细胞以及眼睛细胞的糖类,从而导致这些相关器官受损。另外,维生素C可改善Ⅱ型糖尿病患者的葡萄糖耐受性,[172,173]但是并不是所有研究均支持该疗效。[174]维生素C补充剂(每日两次,每次500毫克,补充一年)可显著减轻糖尿病患者的尿蛋白丢失量。一般在预后较差的糖尿病患者中会出现这种尿蛋白丢失(也叫作“蛋白尿”)。[175]因此,很多医生建议糖尿病患者应每日补充1至3克维生素C。但是,高剂量维生素C可能会使机体出现一些问题。其中有一位受试者在每日服用4.5克维生素C后,出现了血糖升高现象。[176]


一项研究对抗氧化剂补充剂的摄入量作了调查,其中包括维生素E和维生素C,以及糖尿病视网膜病(由糖尿病引起的眼睛病变)的发生率。[177]让人吃惊的是,视网膜出现广泛病变的患者,其曾经补充过维生素E和维生素C的可能性更大。但是该结果与大多数其它已发表的研究数据不一致,这可能反映出一个事实:病得较重的患者更有可能服用补充剂,寄希望于能有所好转。目前,大多数医生仍对这些意外的个别结果并不是很在意。


B类维生素


很多糖尿病患者中,血中维生素B6的水平较低。[178,179]对于伴有神经损伤的糖尿病患者,其维生素B6水平甚至更低。[180] 在由妊娠导致糖尿病的妇女中,维生素B6补充剂可有效改善葡萄糖耐受性。[181, 182]同时,对于服用避孕药引起的葡萄糖不耐症,维生素B6也有改善作用。[183]对于其它研究中的糖尿病患者,每日补充1800毫克吡哆醇α-酮戊二酸盐(维生素B6的某种特殊形式)可显著改善葡萄糖耐受性。[184]标准规格的维生素B6在一些[185]但并非所有试验[186]中显示有效。


生物素是某种B类维生素,是加工葡萄糖时所必需的。当Ⅰ型糖尿病患者每日服用16毫克生物素,并持续服用1周时,他们的空腹血糖水平降低了50%。[187]当Ⅱ型糖尿病患者每日服用9毫克生物素,持续服用2个月时,得到了类似结果。[188]另外,生物素也可以使糖尿病合并神经损伤的患者减轻疼痛。[189]一些医生尝试每日给患者16毫克生物素,持续给药若干周,以观察血糖水平是否有所下降。


在Ⅰ型糖尿病患者中发现,其血中维生素B1(硫胺)水平较低。早在20世纪30年代,就已有试验显示,11位糖尿病患者在每日补充10毫克维生素B1 四周后,其中有6位的血糖水平出现下降。[191]最近,患者在联合服用维生素B1(每日25毫克)和维生素B6(每日50毫克)4周后发现,其糖尿病神经病变症状得到明显改善。[192]但是,该试验是在维生素B1缺乏的发展中国家进行的。因此,在其它地区,维生素B1对糖尿病患者可能不会有类似的疗效。另外,联合服用维生素B1(以某种脂溶性的形式)和“维生素B6加维生素B12”,并尝试各种高水平的剂量,12周后发现,糖尿病神经病变的某些方面症状有所好转。[193]综上所述,一些医生建议糖尿病神经病变的患者应每日补充维生素B1,但是该维生素的最佳摄入量并未明确。


辅酶Q10


辅酶Q10(CoQ10)是正常血糖代谢过程中所必需的。在患有糖尿病的动物中,发现其辅酶Q10缺乏。辅酶Q10对Ⅱ型糖尿病患者的将血糖效果要明显显著于在健康人中观察到的效果。[194]当糖尿病患者每日补充120毫克辅酶Q7(一种与辅酶Q10相似的物质)后,血糖水平降低了31%。[195]但是,对于Ⅰ型糖尿病来说,每日补充100毫克辅酶Q10,三个月后,并未观察到在控制葡萄糖上有所改善,也未减少机体对胰岛素的需求。[196]辅酶Q10补充剂对于糖尿病患者的重要性,目前尚待解决。尽管如此,一些医生仍推荐患者每日服用将近500毫克辅酶Q10,因为这可能对由糖尿病引起的耗损具有保护意义。


左旋肉碱


左旋肉碱是人体正常利用脂肪所必需的一种氨基酸。当糖尿病患者服用左旋肉碱(每日1毫克/千克体重)仅10天后,血脂水平(包括胆固醇和甘油三酯)均下降25-39%。如果将剂量调整到更大(每日注射1克),左旋肉碱也同时可减轻糖尿病神经损伤的疼痛感。[198]


维生素B12 对于神经细胞行使正常功能至关重要。口服或静脉注射维生素B12均可减轻糖尿病引起的神经损伤。[199]由肾脏疾病或肾脏疾病与糖尿病联合引起的神经损伤的患者,在进行肾透析的同时,每日3次,每次静脉注射500微克甲基钴胺素(维生素B12在血液中的主要存在形式)。6个月后,神经疼痛症状显著减轻,神经功能也明显改善。[200]口服型维生素B12的推荐剂量微每日三次,每次500微克。


摄入大量尼亚新(即“烟酸”,维生素B3),大约每日2至3克,可减弱葡萄糖耐受性,因此必需在医疗监督下服用。[201, 202]当剂量较小时(每日500至750毫克,一个月后改为每日250毫克),对某些Ⅱ型糖尿病患者有所帮助,[203]但是该研究尚处于初步阶段。


初步试验显示,在Ⅰ型糖尿病最早期时补充烟酰胺(维生素B3的另一种形式),对患者是有好处的,[204]但是并非所有试验均支持该观点。[205, 206, 207]对于刚被诊断为Ⅰ型糖尿病的患者,烟酰胺确实可保护患者胰岛素分泌细胞的一些功能。对于给予烟酰胺的患者,其胰岛素的需求量本质上与给予安慰剂组的患者是一样高的。[208]一项对照试验显示,刚被诊断为Ⅰ型糖尿病的患者在进行强效胰岛素疗法的同时,服用烟酰胺补充剂(每日三次,每次700毫克),其胰腺功能以及葡萄糖耐受性并未发生明显改善。[209]


有一些[210]并非所有[211]报告表明,在Ⅰ型糖尿病发病风险较高(例如兄弟姐妹中有人患该病)的健康儿童中,补充烟酰胺可能有助于预防发病。Ⅰ型糖尿病儿童的家长应向医生咨询烟酰胺补充剂的相关信息,以更好地预防家中的其它孩子发病。虽然目前并不是清楚烟酰胺的最佳剂量,但是最近已有证据显示,每日25毫克/每公斤体重的剂量与更大剂量所产生的效果是一样的。[212]



在Ⅰ型糖尿病患者中,更容易发生锌缺乏,从而会导致患者的免疫功能降低。[214]研究表明,锌补充剂可降低Ⅰ型糖尿病患者的血糖水平。[215]但是某些证据指出,Ⅱ型糖尿病患者在补充锌制剂后,其葡萄糖利用能力并未得到改善。[216]尽管如此,Ⅱ型糖尿病患者和Ⅰ型糖尿病患者一样,比较容易发生锌缺乏,这可能是由于锌在他们的尿中大量丢失。[217]因此,很多医生建议Ⅱ型糖尿病患者每天补充适量(每日15至25毫克)锌,以纠正机体的锌缺乏。


部分医生对服用锌补充剂的Ⅰ型糖尿病患者非常关注。因为有报告指出,锌可加强糖基化作用,而糖基化作用增强是糖尿病恶化的指征。[218]该试验很难对其进行评价,因为锌制剂可使细胞的生命周期变长,从而使实验室糖基化结果出现虚假加强。因此,在这个问题弄清楚之前,Ⅰ型糖尿病患者在考虑服用锌补充剂时,应先向医生咨询相关信息。


维生素D


维生素D对于维持血中足量胰岛素是必需的。[219]维生素D受体可发现于胰腺,即生成胰岛素的器官,并有初步证据显示,补充维生素D可使某些Ⅱ型糖尿病患者的胰岛素水平有所升高;如果延长维生素D的补充时间,可能会使血糖水平也有所下降。[220]但是,目前并没有足够的信息显示,对于糖尿病患者来说,理想的维生素D摄入量应控制在水平,因为众所周知,大剂量维生素D会导致机体中毒。因此,糖尿病患者在考虑服用维生素D补充剂时,应与医生进行沟通,并对体内维生素D的情况进行评估。


肌醇


肌醇是神经行使正常功能所必需的。糖尿病可导致神经损伤,即糖尿病神经病变。某些研究表明,补充肌醇(每日两次,每次500毫克)可使该疾病有所改善。[221]


牛磺酸


牛磺酸是一种发现于高蛋白食物的氨基酸。在Ⅰ型糖尿病患者中,血中牛磺酸水平较低,因此血液粘性会随之发生改变,从而导致发生心脏病的风险性升高。补充牛磺酸(每日1.5克)可使血中牛磺酸水平恢复至正常,并在3个月内纠正机体的血液粘性问题。[222]但是在一项双盲试验中,Ⅱ型糖尿病患者在每日补充2克牛磺酸12个月后,其肾脏并发症并未得到改善。[223]


鱼油


如果健康人服用ω-3脂肪酸补充剂,其葡萄糖耐受性会有所改善。[224]一些研究发现,鱼油补充剂可使患者的葡萄糖耐受性,[225]高甘油三酯,[226]和高胆固醇[227]得到改善。但是,其它研究发现,鱼油补充剂反而使患者的胆固醇水平升高,并且糖尿病症状加重。[229, 230, 231]在这个问题解决之前,糖尿病患者仍可以随意吃鱼,但是在服用鱼油补充剂前应向医生咨询相关问题。有时,这种补充剂确实被考虑应用于糖尿病的治疗。当患有糖尿病神经病变和糖尿病肾病的患者服用高纯度EPA(每日三次,每次600毫克)达48周,而EPA是存在于鱼油补充剂中的两种重要ω-3脂肪酸之一。[232]


由于槲皮黄酮能降低体内的山梨糖醇水平,因此很多医生认为,它可能对糖尿病患者有效。山梨糖醇是一种积聚于糖尿病患者的神经细胞、肾细胞以及眼睛细胞的糖类,从而导致这些相关器官受损。[233]并且目前,很多临床试验也正致力于证明槲皮黄酮的疗效。



硫酸钒可改善Ⅱ型糖尿病患者的血糖水平的控制,[234, 235, 236]但是对Ⅰ型糖尿病可能没有改善作用。[237] 一小组Ⅱ型糖尿病患者每日服用75至300毫克硫酸钒,服用6周。[238]仅在服用剂量为150至300毫克的受试者中,葡萄糖代谢得到明显改善,空腹血糖降低,慢性高血糖的另一项指标也随之降低。在服用300毫克剂量水平的受试者中,胆固醇总量降低,但是高密度脂蛋白(HDL)胆固醇水平并没有随之下降。任何剂量组中均未观察到机体的胰岛素敏感性得到改善。虽然在六周试验之后,未发现硫酸钒补充剂的任何毒性反应,但是在某些150毫克剂量组的受试者以及所有300毫克剂量组的受试者中,出现了胃肠道的副作用。可使Ⅱ型糖尿病患者见效的剂量通常为每日100毫克,但是该剂量硫酸钒是否具有长期安全性,目前尚属未知。很多医生期望研究能够证明,该水平的剂量从长远来说并不安全。


低聚果糖


一项初步试验显示,补充低聚果糖(每日8克,补充2周)可显著降低Ⅱ型糖尿病患者的空腹血糖水平和血清总胆固醇水平。[239]但是在另一项试验中,补充低聚果糖(每日15克,补充20天)对Ⅱ型糖尿病患者的血糖水平或血脂水平并无影响。[240]另外,一些双盲试验表明,健康人在补充低聚果糖或半乳低聚糖(GOS)8周后,其血糖水平、胰岛素分泌或血脂水平均无明显变化。[241, 242]由于研究结果之间存在矛盾,因此需要进行更多的研究以明确低聚果糖和菊粉(某种植物淀粉)对于糖尿病和血脂水平的作用。



在糖尿病患者体内,金属锰的水平一般较低。[243]动物研究表明,锰缺乏会导致葡萄糖不耐性,但是经过适量补充后可使病情好转。[244]一位胰岛素依赖型糖尿病的年轻患者在每日服用3至5毫克口服型氯化锰后,可观察到其血糖显著下降,有时甚至降低到较为危险的水平。在其它四位受试者中,未观察到锰补充剂对血糖水平有所影响。[245]如果患者想尝试锰补充剂进行治疗,切记只有在医生的密切监督下才能服用。


中碳链甘油三酯


一项短期临床试验发现,中碳链甘油三酯(MCT)能降低血糖水平。[246]因此,研究者又进一步研究了中碳链甘油三酯对于Ⅱ型糖尿病的疗效。他们让受试者每日补充中碳链甘油三酯,其摄入量大约占所有食物能量的17.5%,在连续补充30天后发现,中碳链甘油三酯并不能有效改善糖尿病的各项控制指数。[247]


淀粉克星


淀粉克星是一种“淀粉酶”(消化酶,能降解食物中的淀粉,从而保证机体正常吸收)抑制剂。对照研究证明,在一顿富含淀粉的正餐中,如果同时服用浓缩的淀粉克星提取物,结果显示,无论是对于健康人还是糖尿病患者,其餐后正常血糖升高量均有所下降。[248, 249, 250, 251, 252]因此研究者认为,淀粉克星应该有助于糖尿病的控制。但是目前尚无有关其长期疗效的研究结果。


有无副作用及药物之间相互作用?


请参考各种营养补充剂的副作用及相互作用。


可能有益的草药


很多草药均可能有助于改善糖尿病的相关症状,其中包括控制血糖水平。


胡椒


双盲试验表明,局部使用含有0.025-0.075%辣椒辣素(提取自胡椒)的乳霜可缓解糖尿病神经病变(由糖尿病导致的麻痹和极度刺痛感)。[253,254]每天使用四次或更多次,可缓解剧痛。另外,必需在医生的监督下使用该草药。 


洋车前草


补充洋车前草是用以改善血糖控制以及胆固醇控制的一种安全疗法。一项双盲试验显示,Ⅱ型糖尿病男性患者在每日服用5.1克洋车前草8周后,其血糖水平降低了11%至19.2%,总胆固醇降低了8.9%,低密度脂蛋白胆固醇降低了13%。[255]


亚洲人参


传统中医疗法中,亚洲人参常用于糖尿病的治疗。试管试验和动物研究均显示,亚洲人参可促使胰岛素从胰腺释放,并可增加胰岛素受体的数目。[256,257]动物研究还发现,人参可直接作用于血糖,使其水平有所下降。[258]一项双盲试验中,让Ⅱ型糖尿病患者每日补充200毫克人参提取物,结果显示,血糖控制以及机体的能量水平均得到改善。[259]


西洋参


在一项小规模的初步试验中,使Ⅱ型糖尿病患者在喝完高糖饮料后服用3克西洋参,发现患者的血糖升高量有所降低。[260]如果将西洋参的服用时间改为喝饮料前40分钟或与饮料一起摄入,其降血糖作用并未发现差异。将摄入高糖饮料后的西洋参服用量增加至6至9克时,并未观察到它的降血压作用随之提高。[261]并且,该研究进一步证明,无论是与高糖饮料一起摄入,还是在喝饮料前2小时服用,西洋参的降血糖效果均无差异,说明其服用时间并不影响疗效。


罗勒


有关圣罗勒叶子和柠檬罗勒种子的初步试验显示,这些草药可能有助于Ⅱ型糖尿病患者控制血糖水平。[262, 263, 264]有关圣罗勒叶子的药理机制,目前尚不清楚。但是,柠檬罗勒种子之所以有效,可能是因为它将饮食中的单糖(可迅速提升血糖水平,对机体不利)替代成膳食纤维(提升血糖的速度较为缓慢,易于控制)。但是烹调中常用的罗勒是否对糖尿病患者有效,目前尚属未知。


匙羹藤


在Ⅱ型糖尿病患者中,匙羹藤可刺激患者的胰腺生成胰岛素。在Ⅰ型和Ⅱ型糖尿病患者中,匙羹藤还可以提高胰岛素降低血糖的能力。目前为止,尚无双盲试验证明匙羹藤对任何一种类型糖尿病的疗效。但是,一项初步研究显示,Ⅱ型糖尿病患者在每日服用400毫克匙羹藤提取物18个月或更长时间后,根据糖尿病血检测结果,病情已得到明显改善,并且可适当减少患者的抗糖尿病的药物治疗。[265]在另一项以Ⅰ型糖尿病患者为受试者的对照试验中,类似量的匙羹藤提取物使机体对胰岛素的需求量降低了。[266]另外,最近一项初步试验发现,Ⅰ型和Ⅱ型糖尿病患者在每日服用800毫克匙羹藤提取物(其中的活性成分匙羹藤酸的浓度已标准化至25%)三个月后,血糖水平显著改善。[267] 需要注意的是,虽然匙羹藤不能作为胰岛素的替代品,但是在服用匙羹藤时,应减少胰岛素使用量已避免发生低血糖。


苦瓜


未加工的整个苦瓜,油炸苦瓜片,[268]或水抄苦瓜,[269]或苦瓜汁[270]均可有效改善Ⅱ型糖尿病患者的血糖控制。但是,需要进行双盲试验对该潜在的疗效加以证明。


洋葱


初步试验以及至少一项双盲试验已显示,大量食用洋葱可降低糖尿病患者的血糖水平。[271, 272, 273]其相关机制并不清楚,但是有证据表明,洋葱中有一些成分可阻断胰岛素在肝内的降解,从而可使机体内胰岛素水平保持在较高水平。[274]


越桔


越桔可降低某些糖尿病并发症,例如糖尿病白内障和视网膜病。在一些糖尿病视网膜病变的患者中,补充标准规格的越桔提取物可有效改善视网膜损伤的症状。[275]


银杏


已证明银杏提取物可有效预防并治疗早期糖尿病神经病变,但是该领域的相关研究均处于初步阶段。[276]其它可能有效的草药还包括胡芦巴种子和刺五加(俗名西伯利亚人参)。


槲寄生


槲寄生提取物可刺激胰腺细胞释放胰岛素,[277]动物研究发现,它也可缓解糖尿病的症状。[278]目前尚无人类研究发表,但是,槲寄生早已作为一种糖尿病传统疗法而享誉全世界。临床试验也已证明了这些较有发展前景的初步发现。槲寄生的传统用法为:取碎槲寄生2至4茶匙,泡在两杯水中过一晚。次日早晨一件事就是喝下已泡制一晚的草药,如果需要可以往药中加入蜂蜜调味。剩下一部分草药,并继续浸泡,直至晚上睡觉前把它全部喝完。


橄榄叶


橄榄叶提取物可使患有糖尿病的动物降低血糖。[279]但是在人类临床试验中尚未观察到这些结果。


灵芝


动物研究[280]和一些人类初步试验[281]认为,灵芝可能对糖尿病患者有益。


有无副作用及药物之间相互作用?


请参考各种营养补充剂的副作用及相互作用。


可能有益的整体疗法


针灸可能有助于糖尿病以及相关并发症的治疗。初步研究表明,在Ⅱ型糖尿病患者中,针灸可降低血糖,[282, 283, 284]并改善胰岛素的生成,[285]但是目前并未观察到它的长期疗效。而另一项初步试验显示,糖尿病神经病变的患者在接受为期10周的六次针灸后,其中77%患者的疼痛有显著减轻,很多人甚至减少了止痛药的使用量,但是同样的问题是,目前也并未观察到针灸对这类患者在血糖控制方面的长期疗效。[286]另外,膀胱控制问题是发生于长期糖尿病患者的并发症,患者在经过针灸治疗后,其症状显著减轻。[287, 288]


参考文献


1. Hoogeveen EK, Kostense PJ, Jakobs C, et al. Hyperhomocysteinemia increases risk of death, especially in type 2 diabetes: 5-year follow-up of the Hoorn Study. Circulation 2000;101:1506–11.

2. Colditz GA, Manson JE, Stampfer MJ, et al. Diet and risk of clinical diabetes in women. Am J Clin Nutr 1992;55:1018–23.

3. Feskens EJ, Bowles CH, Kromhout D. Carbohydrate intake and body mass index in relation to the risk of glucose intolerance in an elderly population. Am J Clin Nutr 1991;54:136–40.

4. Wright DW, Hansen RI, Mondon CE, Reaven GM. Sucrose-induced insulin resistance in the rat: modulation by exercise and diet. Am J Clin Nutr 1983;38:879–83.

5. Reiser S, Hallfrisch J, Fields M, et al. Effects of sugars on indices of glucose tolerance in humans. Am J Clin Nutr 1986;43:151–9.

6. Cohen AM, Bavly S, Poznanski R. Change of diet of Yemenite Jews in relation to diabetes and ischaemic heart-disease. Lancet 1961;2:1399–401.

7. Cohen AM, Fidel J, Cohen B, et al. Diabetes, blood lipids, lipoproteins, and change of environment: restudy of the “new immigrant Yemenites” in Israel. Metabolism 1979;28:716–28.

8. Feskens EJ, Bowles CH, Kromhout D. Carbohydrate intake and body mass index in relation to the risk of glucose intolerance in an elderly population. Am J Clin Nutr 1991;54:136–40.

9. Wolever TMS, Brand Miller J. Sugars and blood glucose control. Am J Clin Nutr 1995;62:212S–7S [review].

10. Wolever TMS, Brand Miller J. Sugars and blood glucose control. Am J Clin Nutr 1995;62:212S–7S [review].

11. Salmeron J, Manson JE, Stampfer MJ, et al. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997;277:472–7.

12. Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997;20:545–50.

13. Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995;18:1104–12.

14. Salmeron J, Manson JE, Stampfer MJ, et al. Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. JAMA 1997;277:472–7.

15. Salmeron J, Ascherio A, Rimm EB, et al. Dietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care 1997;20:545–50.

16. Colagiuri S, Miller JJ, Edwards RA. Metabolic effects of adding sucrose and aspartame to the diet of subjects with noninsulin-dependent diabetes mellitus. Am J Clin Nutr 1989;50:474–8.

17. Abraira C, Derler J. Large variations of sucrose in constant carbohydrate diets in type II diabetes. Am J Med 1988;84:193–200.

18. Loghmani E, Rickard K, Washburne L, et al. Glycemic response to sucrose-containing mixed meals in diets of children with insulin-dependent diabetes mellitus. J Pediatr 1991;119:531–7.

19. American Diabetes Association. Position Statement: nutrition recommendations and principles for people with diabetes mellitus. Diabetes Care 1999;22:S42–5 [review].

20. Brand-Miller J, Foster-Powell K. Diets with a low glycemic index: from theory to practice. Nutr Today 1999;34:64–72 [review].

21. Chandalia M, Garg A, Lutjohann D, et al. Beneficial effects of high dietary fiber intake in patients with type 2 diabetes mellitus. New Engl J Med 2000;342:1392–8.

22. Florholmen J, Arvidsson-Lenner R, Jorde R, Burhol PG. The effect of Metamucil on postprandial blood glucose and plasma gastric inhibitory peptide in insulin-dependent diabetics. Acta Med Scand 1982;212:237–9.

23. Rodríguez-Morán M, Guerrero-Romero F, Lazcano-Burciaga G. Lipid- and glucose-lowering efficacy of plantago psyllium in type II diabetes. Diabetes Its Complications 1998;12:273–8.

24. Landin K, Holm G, Tengborn L, Smith U. Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men. Am J Clin Nutr 1992;56:1061–5.

25. Schwartz SE, Levine RA, Weinstock RS, et al. Sustained pectin ingestion: effect on gastric emptying and glucose tolerance in non-insulin-dependent diabetic patients. Am J Clin Nutr 1988;48:1413–7.

26. Hallfrisch J, Scholfield DJ, Behall KM. Diets containing soluble oat extracts improve glucose and insulin responses of moderately hypercholesterolemic men and women. Am J Clin Nutr 1995;61:379–84.

27. Doi K, Matsuura M, Kawara A, Baba S. Treatment of diabetes with glucomannan (konjac mannan). Lancet 1979;1:987–8 [letter].

28. Vuksan V, Sievenpiper JL, Owen R, et al. Beneficial effects of viscous dietary fiber from Konjac-mannan in subjects with the insulin resistance syndrome: results of a controlled metabolic trial. Diabetes Care 2000;23:9–14.

29. Sharma RD, Raghuram TC. Hypoglycaemic effect of fenugreek seeds in non-insulin dependent diabetic subjects. Nutr Res 1990;10:731–9.

30. Raghuram TC, Sharma RD, Sivakumar B, Sahay BK. Effect of fenugreek seeds on intravenous glucose disposition in non-insulin dependent diabetic patients. Phytother Res 1994;8:83–6.

31. Nuttall FW. Dietary fiber in the management of diabetes. Diabetes 1993;42:503–8.

32. Feskens EJM, Bowles CH, Kromhout D. Inverse association between fish intake and risk of glucose intolerance in normoglycemic elderly men and women. Diabetes Care 1991;14:935–41.

33. Mori TA, Bao DQ, Burke V, et al. Dietary fish as a major component of a weight-loss diet: effect on serum lipids, glucose, and insulin metabolism in overweight hypertensive subjects. Am J Clin Nutr 1999;70:817–25.

34. Snowdon DA, Phillips RL. Does a vegetarian diet reduce the occurrence of diabetes? Am J Publ Health 1985;75:507–12.

35. Crane MG, Sample CJ. Regression of diabetic neuropathy with vegan diet. Am J Clin Nutr 1988;48:926 [abstract #P28].

36. Crane MG, Sample C. Regression of diabetic neuropathy with total vegetarian (vegan) diet. J Nutr Med 1994;4:431–9.

37. Cohen D, Dodds R, Viberti G. Effect of protein restriction in insulin dependent diabetics at risk of nephropathy. BMJ 1987;294:795–8.

38. Evanoff G, Thompson C, Bretown J, Weinman E. Prolonged dietary protein restriction in diabetic nephropathy. Arch Intern Med 1989;149:1129–33.

39. Gin H, Aparicio M, Potauz L, et al. Low-protein, low-phosphorus diet and tissue insulin sensitivity in insulin-dependent diabetic patients with chronic renal failure. Nephron 1991;57:411–5.

40. Baba NH, Sawaya S, Torbay N, et al. High protein vs high carbohydrate hypoenergetic diet for the treatment of obese hyperinsulinemic subjects. Int J Obes Relat Metab Disord 1999;23:1202–6.

41. Feskens EJ, Virtanen SM, Rasanen L, et al. Dietary factors determining diabetes and impaired glucose tolerance. A 20-year follow-up of the Finnish and Dutch cohorts of the Seven Countries Study. Diabetes Care 1995;18:1104–12.

42. Feskens EJ, Kromhout D. Habitual dietary intake and glucose tolerance in euglycaemic men: the Zutphen Study. Int J Epidemiol 1990;19:953–9.

43. Marshall JA, Hoag S, Shetterly S, et al. Dietary fat predicts conversion from impaired glucose tolerance to NIDDM. The San Luis Valley Diabetes Study. Diabetes Care 1994;17:50–6.

44. Marshall JA, Hamman RF, Baxter J. High-fat, low-carbohydrate diet and the etiology of non-insulin-dependent diabetes mellitus: the San Luis Valley Diabetes Study. Am J Epidemiol 1991;134:590–603.

45. Uusitupa M, Schwab U, Makimattila S, et al. Effects of two high-fat diets with different fatty acid compositions on glucose and lipid metabolism in healthy young women. Am J Clin Nutr 1994;59:1310–6.

46. Sarkkinen E, Schwab U, Niskanen L, et al. The effects of monounsaturated-fat enriched diet and polyunsaturated-fat enriched diet on lipid and glucose metabolism in subjects with impaired glucose tolerance. Eur J Clin Nutr 1996;50:592–8.

47. Garg A, Bananome A, Grundy SM, et al. Comparison of a high-carbohydrate diet with a high-monounsaturated-fat diet in patients with non-insulin dependent diabetes mellitus. N Engl J Med 1988;319:829–34.

48. Donaghue KC, Pena MM, Chan AK, et al. Beneficial effects of increasing monounsaturated fat intake in adolescents with type 1 diabetes. Diabetes Res Clin Pract 2000;48:193–9.

49. Muntoni S, Cocco P, Aru G, Cucca F. Nutritional factors and worldwide incidence of childhood type 1 diabetes. Am J Clin Nutr 2000;71:1525–9.

50. Dahl-Jorgensen K, Joner G, Hanssen KF. Relationship between cows’ milk consumption and incidence of IDDM in childhood. Diabetes Care 1991;14:1081–3.

51. Coleman DL, Kuzava JE, Leiter EH. Effect of diet on incidence of diabetes in nonobese diabetic mice. Diabetes 1990;39:432–6.

52. Gerstein H. Cow’s milk exposure and type I diabetes mellitus. Diabetes Care 1994;17:13–9.

53. Virtanen SM, Laara E, Hypponen E, et al. Cow’s milk consumption, HLA–DQB1 genotype, and type I diabetes. Diabetes 2000;49:912–7.

54. Hypponen E, Kenward MG, Virtanen SM, et al. Infant feeding, early weight gain, and risk of type I diabetes. Diabetes Care 1999;22:1961–5.

55. Verge CF, Howard NJ, Irwig L, et al. Environmental factors in childhood IDDM. A population-based, case-control study. Diabetes Care 1994;17:1381–9.

56. Bodington MJ, McNallyPG, Burden AC. Cow’s milk and type I childhood diabetes: no increase in risk. Diabetes Med 1994;11:663–5.

57. Wadsworth EJ, Shield JP, Hunt LP, Baum JD. A case-control study of environmental factors associated with diabetes in the under 5’s. Diabetes Med 1997;14:390–6.

58. Dahlquist G, Blom L, Lonnberg G. The Swedish Childhood Diabetes Study—a multivariate analysis of risk determinants for diabetes in different age groups. Diabetologia 1991;34:757–62.

59. Elliott RB, Harris DP, Hill JP, et al. Type I (insulin-dependent) diabetes mellitus and cow milk: casein variant consumption. Diabetologia 1999;42:292–6.

60. Karajalainen J, Martin JM, Knip M, et al. A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. N Engl J Med 1992;327:302–7.

61. Scott FWE, Norris JM, Kolb H. Milk and type I diabetes. Diabetes Care 1996;19:379–83 [review].

62. Atkinson MA, Bowman MA, Kao K-J, et al. Lack of immune responsiveness to bovine serum albumin in insulin-dependent diabetes. N Engl J Med 1993;329:1853–8.

63. Gerstein H. Cow’s milk exposure and type I diabetes mellitus. Diabetes Care 1994;17:13–9.

64. Akerblom HK, Knip M. Putative environmental factors in Type 1 diabetes. Diabetes Metab Rev 1998;14:31–67 [review].

65. Hypp?nen E, Kenward MG, Virtanen SM, et al. Infant feeding, early weight gain, and risk of type 1 diabetes. Diabetes Care 1999;22:1961–5.

66. Pettit DJ, Forman MR, Hanson RL, et al. Breast feeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 1997;350:166–8.

67. Isida K, Mizuno A, Murakami T, Shima K. Obesity is necessary but not sufficient for the development of diabetes mellitus. Metabolism 1996;45:1288–95.

68. Casassus P, Fontbonne A, Thibult N, et al. Upper-body fat distribution: a hyperinsulinemia-independent predictor of coronary heart disease mortality. Arterioscler?Thromb 1992;1387–92.

69. Karter AJ, Mayer-Davis EJ, Selby JV, et al. Insulin sensitivity and abdominal obesity in African-American, Hispanic, and non-Hispanic white men and women. Diabetes 1996;45:1547–55.

70. Park KS, Hree BD, Lee K-U, et al. Intra-abdominal fat is associated with decreased insulin sensitivity in healthy young men. Metabolism 1991;40:600–3.

71. Long SD, Swanson MS, O’Brien K, et al. Weight loss in severely obese subjects prevents the progression of impaired glucose tolerance to type II diabetes. Diabetes Care 1994;17:372.

72. Pi-Sunyer FX. Weight and non-insulin-dependent diabetes mellitus. Am J Clin Nutr 1996;63(suppl):426S–9S.

73. Wing RR, Marcuse MD, Blair EH, et al. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care 1994;17:30.

74. Henry RR, Gumbiner B. Benefits and limitations of very-low-calorie diet therapy in obese NIDDM. Diabetes Care 1991;14:802–23.

75. Hypp?nen E, Kenward MG, Virtanen SM, et al. Infant feeding, early weight gain, and risk of type 1 diabetes. Diabetes Care 1999;22:1961–5.

76. Hersey WC, Graves JE, Pollock ML, et al. Endurance exercise training improves body composition and plasma insulin responses in 70- to 79-year-old men and women. Metabol 1994;43:847–54.

77. Rasmussen OW, Lauszus FF, Hermansen K. Effects of postprandial exercise on glycemic response in IDDM subjects. Diabetes Care 1994;17:1203.

78. Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS. Physical activity and reduced occurrence of non-insulin-dependent diabetes mellitus. N Engl J Med 1991;325:147–52.

79. Grimm J-J, Muchnick S. Type I diabetes and marathon running. Diabetes Care 1993;16:1624 [letter].

80. Bell DSH. Exercise for patients with diabetes—benefits, risks, precautions. Postgrad Med 1992;92:183–96 [review].

81. Ligtenberg PC, Blans M, Hoekstra JB, et al. No effect of long-term physical activity on the glycemic control in type 1 diabetes patients: a cross-sectional study. Neth J Med 1999;55:59–63.

82. Kiechl S, Willeit J, Poewe W, et al. Insulin sensitivity and regular alcohol consumption: large, prospective, cross sectional population study Bruneck study. BMJ 1996;313:1040–4.

83. Facchini F, Chen Y-DI, Reaven GM. Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care 1994;17:115.

84. Rimm EB, Chan J, Stampfer MJ, et al. Prospective study of cigarette smoking, alcohol use, and the risk of diabetes in men. BMJ 1995;310:555–9.

85. Stampfer MJ, Colditz GA, Willett WC, et al. A prospective study of moderate alcohol drinking and risk of diabetes in women. Am J Epidemiol 1988;128:549–58.

86. Goden G, Chen X, Desantis R, et al. Effects of ethanol on carbohydrate metabolism in the elderly. Diabetes 1993;42:28–34.

87. Ben G, Gnudi L, Maran A, et al. Effects of chronic alcohol intake on carbohydrate and lipid metabolism in subjects with type II (non-insulin-dependent) diabetes. Am J Med 1991;90:70.

88. Young RJ, McCulloch DK, Prescott RJ, Clarke PF. Alcohol: another risk factor for diabetic retinopathy? BMJ 1984;288:1035.

89. Connor H, Marks V. Alcohol and diabetes. A position paper prepared by the Nutrition Subcommittee of the British Diabetic Association’s Medical Advisory Committee and approved by the Executive Council of the British Diabetic Association. Human Nutr Appl Nutr 1985;39A:393–9.

90. Ajani UA, Hennekens CH, Spelsberg A, Manson JE. Alcohol consumption and risk of type 2 diabetes mellitus among US male physicians. Arch Intern Med 2000;160:1025–30.

91. Wei M, Gibbons LW, Mitchell TL, et al. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care 2000;23:18–22.

92. Valmadrid CT, Klein R, Moss SE, et al. Alcohol intake and the risk of coronary heart disease mortality in persons with older-onset diabetes mellitus. JAMA 1999;282:239–46.

93. Wei M, Gibbons LW, Mitchell TL, et al. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care 2000;23:18–22.

94. Stegmayr B, Lithner F. Tobacco and end stage diabetic nephropathy. BMJ 1987;295:581–2.

95. Scala C, LaPorte RE, Dorman JS, et al. Insulin-dependent diabetes mellitus mortality—the risk of cigarette smoking. Circulation 1990;82:37–43.

96. Rimm EB, Manson JE, Stampfer MJ, et al. Cigarette smoking and the risk of diabetes in women. Am J Public Health 1993;83:211–4.

97. Rindone JP, Austin M, Luchesi J. Effect of home blood glucose monitoring on the management of patients with non-insulin dependent diabetes mellitus in the primary care setting. Am J Manag Care 1997;3:1335–8.

98. Faas A, Schellevis FG, Van Eijk JT. The efficacy of self-monitoring of blood glucose in NIDDM subjects. A criteria-based literature review. Diabetes Care 1997;20:1482–6.

99. [No authors listed.] Position statement: Tests of glycemia in diabetes. American Diabetes Association. Diabetes Care 2000;23(Suppl 1):S80–2.

100. Goldstein DE, Little RR, Lorenz RA, et al. Tests of glycemia in diabetes. Diabetes Care 1995;18:896–909 [review].

101. Gallichan M. Self monitoring of glucose by people with diabetes: evidence based practice. BMJ 1997;314:964–7 [review].

102. Steel LG. Identifying technique errors. Self-monitoring of blood glucose in the home setting. J Gerontol Nurs 1994;20:9–12.

103. Foster SA, Goode JV, Small RE. Home blood glucose monitoring. Ann Pharmacother 1999;33:355–63 [review].

104. Barringer TA, Kirk JK, Santaniello AC, et al. Effect of a multivitamin and mineral supplement on infection and quality of life. A randomized, double-blind, placebo-controlled trial. Ann Intern Med 2003;138:365–71.

105. Herepath WB. Journal Provincial Med Surg Soc 1854:374.

106. Offenbacher EG, Pi-Sunyer FX. Beneficial effect of chromium-rich yeast on glucose tolerance and blood lipids in elderly subjects. Diabetes 1980;29:919–25.

107. Anderson RA. Chromium in the prevention and control of diabetes. Diabetes Metab 2000;26:22–7 [review].

108. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr 1998;17:548–55 [review].

109. Evans GW. The effect of chromium picolinate on insulin controlled parameters in humans. Int J Biosocial Med Res 1989;11:163–80.

110. Gaby AR, Wright JV. Diabetes. In Nutritional Therapy in Medical Practice: Reference Manual and Study Guide. Kent, WA: 1996, 54–64 [review].

111. Anderson RA, Polansky MM, Bryden NA, Canary JJ. Supplemental-chromium effects on glucose, insulin, glucagon, and urinary chromium losses in subjects consuming controlled low-chromium diets. Am J Clin Nutr 1991;54:909–16.

112. Jovanovic L, Gutierrez M, Peterson CM. Chromium supplementation for women with gestational diabetes. J Trace Elem Exptl Med 1999;12:91–8.

113. Anderson RA, Polansky MM, Bryden NA, et al. Chromium supplementation of human subjects: effects on glucose, insulin, and lipid variables. Metabolism 1983;32:894–9.

114. Urberg M, Zemel MB. Evidence for synergism between chromium and nicotinic acid in the control of glucose tolerance in elderly humans. Metabolism 1987;36:896–9.

115. Lee NA, Reasner CA. Beneficial effect of chromium supplementation on serum triglyceride levels in NIDDM. Diabetes Care 1994;17:1449–52.

116. Hermann J, Chung H, Arquitt A, et al. Effects of chromium or copper supplementation on plasma lipids, plasma glucose and serum insulin in adults over age fifty. J Nutr Elderly 1998;18:27–45.

117. Sherman L, Glennon JA, Brech WJ, et al. Failure of trivalent chromium to improve hyperglycemia in diabetes mellitus. Metabolism 1968;17:439–42.

118. Rabinowitz MB, Gonick HC, Levin SR, Davidson MB. Effects of chromium and yeast supplements on carbohydrate and lipid metabolism in diabetic men. Diabetes Care 1983;6:319–27.

119. Uusitupa MI, Kumpulainen JT, Voutilainen E, et al. Effect of inorganic chromium supplementation on glucose tolerance, insulin response, and serum lipids in noninsulin-dependent diabetics. Am J Clin Nutr 1983;38:404–10.

120. Anderson RA, Cheng N, Bryden NA, et al. Elevated intakes of supplemental chromium improve glucose and insulin variables in individuals with type 2 diabetes. Diabetes 1997;46:1786–91.

121. Gaby AR, Wright JV. Nutritional protocols: diabetes mellitus. In Nutritional Therapy in Medical Practice: Protocols and Supporting Information. Kent, WA: 1996, 10.

122. Paolisso G, Scheen A, D’Onofrio FD, Lefebvre P. Magnesium and glucose homeostasis. Diabetologia 1990;33:511–4 [review].

123. Eibl NL, Schnack CJ, Kopp H-P, et al. Hypomagnesemia in type II diabetes: effect of a 3-month replacement therapy. Diabetes Care 1995;18:188.

124. Paolisso G, Sgambato S, Pizza G, et al. Improved insulin response and action by chronic magnesium administration in aged NIDDM subjects. Diabetes Care 1989;12:265–9.

125. Lima M, Cruz T, Carreiro Pousada J, et al: The effect of magnesium supplementation in increasing doses on the control of type 2 diabetes. Diabetes Care 1998;21:682–6.

126. Paolisso G, Sgambato S, Gambardella A, et al. Daily magnesium supplements improve glucose handling in elderly subjects. Am J Clin Nutr 1992;55:1161–7.

127. Smellie WS, O’Reilly DS, Martin BJ, Santamaria J. Magnesium replacement and glucose tolerance in elderly subjects. Am J Clin Nutr 1993;57:594–6 [letter].

128. Sjorgren A, Floren CH, Nilsson A. Oral administration of magnesium hydroxide to subjects with insulin dependent diabetes mellitus. Magnesium 1988;121:16–20.

129. de Valk HW, Verkaaik R, van Rijn HJM, et al. Oral magnesium supplementation in insulin-requiring type 2 diabetic patients. Diabet Med 1998;15:503–7.

130. McNair P, Christiansen C, Madsbad S, et al. Hypomagnesemia, a risk factor in diabetic retinopathy. Diabetes 1978;27:1075–7.

131. Mimouni F, Miodovnik M, Tsang RC, et al. Decreased maternal serum magnesium concentration and adverse fetal outcome in insulin-dependent diabetic women. Obstet Gynecol 1987;70:85–9.

132. American Diabetes Association. Magnesium supplementation in the treatment of diabetes. Diabetes Care 1992;15:1065–7.

133. Konrad T, Vicini P, Kusterer K, et al. alpha lipoic acid treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care 1999;22:280–7.

134. Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet Med 1999;16:1040–3.

135. Ruhnau KJ, Meissner HP, Finn JR, et al. Effects of 3-week oral treatment with the antioxidant thioctic acid (alpha-lipoic acid) in symptomatic diabetic polyneuropathy. Diabet Med 1999;16:1040–3.

136. Reljanovic M, Reichel G, Rett K, et al. Treatment of diabetic polyneuropathy with the antioxidant thioctic acid (alpha-lipoic acid): a two year multicenter randomized double-blind placebo-controlled trial (ALADIN II). Alpha Lipoic Acid in Diabetic Neuropathy. Free Radic Res 1999;31:171–9.

137. Ziegler D, Schatz H, Conrad F, et al. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN Study). Diabetes Care 1997;20:369–73.

138. Jacob S, Ruus P, Hermann R, et al. Oral administration of RAC-alpha-lipoic acid modulates insulin sensitivity in patients with type-2 diabetes mellitus: a placebo-controlled pilot trial. Free Radic Biol Med 1999;27:309–14.

139. Ziegler D, Hanefeld M, Ruhnau KJ, et al. Treatment of symptomatic diabetic polyneuropathy with the antioxidant alpha-lipoic acid: a 7-month multicenter randomized controlled trial (ALADIN III Study). ALADIN III Study Group. Alpha-Lipoic Acid in Diabetic Neuropathy. Diabetes Care 1999;22:1296–301.

140. Morcos M, Borcea V, Isermann B, et al. Effect of alpha-lipoic acid on the progression of endothelial cell damage and albuminuria in patients with diabetes mellitus: an exploratory study. Diabetes Res Clin Pract 2001;52:175–83.

141. Jamal GA, Carmichael H. The effect of gamma-linolenic acid on human diabetic peripheral neuropathy: a double-blind placebo-controlled trial. Diabet Med 1990;7:319–23.

142. Doi K. Effect of konjac fibre (glucomannan) on glucose and lipids. Eur J Clin Nutr 1995;49(Suppl. 3):S190–7 [review].

143. Melga P, Giusto M, Ciuchi E, et al. Dietary fiber in the dietetic therapy of diabetes mellitus. Experimental data with purified glucomannans. Riv Eur Sci Med Farmacol 1992;14:367–73 [in Italian].

144. Huang CY, Zhang MY, Peng SS, et al. Effect of Konjac food on blood glucose level in patients with diabetes. Biomed Environ Sci 1990;3:123–31.

145. Vuksan V, Jenkins DJ, Spadafora P, et al. Konjac-mannan (glucomannan) improves glycemia and other associated risk factors for coronary heart disease in type 2 diabetes. A randomized controlled metabolic trial. Diabetes Care 1999;22:913–9.

146. Vorster HH, Lotter AP, Odendaal I, et al. Benefits from supplementation of the current recommended diabetic diet with gel fibre. Int Clin Nutr Rev 1988;8:140–6.

147. Cesa F, Mariani S, Fava A, et al. The use of vegetable fibers in the treatment of pregnancy diabetes and/or excessive weight gain during pregnancy. Minerva Ginecol 1990;42:271–4 [in Italian].

148. Knekt P, Reunanen A, Marniumi J, et al. Low vitamin E status is a potential risk factor for insulin-dependent diabetes mellitus. J Intern Med 1999;245:99–102.

149. Salonen JT, Nyssonen K, Tuomainen T-P, et al. Increased risk of non-insulin dependent diabetes mellitus at low plasma vitamin E concentrations: a four year follow up study in men. BMJ 1995;311:1124–7.

150. Bierenbaum ML, Noonan FJ, Machlin LJ, et al. The effect of supplemental vitamin E on serum parameters in diabetics, post coronary and normal subjects. Nutr Rep Int 1985;31:1171–80.

151. Paolisso G, D’Amore A, Giugliano D, et al. Pharmacologic doses of vitamin E improve insulin action in healthy subjects and non-insulin dependent diabetic patients. Am J Clin Nutr 1993;57:650–6.

152. Paolisso G, D’Amore A, Galzerano D, et al. Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care 1993;16:1433–7.

153. Tütüncü NB, Bayraktar M, Varli K. Reversal of defective nerve condition with vitamin E supplementation in type 2 diabetes. Diabetes Care 1998;21:1915–8.

154. Paolisso G, Di Maro G, Galzerano D, et al. Pharmacological doses of vitamin E and insulin action in elderly subjects. Am J Clin Nutr 1994;59:1291–6.

155. Paolisso G, Gambardella A, Galzerano D, et al. Antioxidants in adipose tissue and risk of myocardial infarction. Lancet 1994;343:596 [letter].

156. Tütüncü NB, Bayraktar M, Varli K. Reversal of defective nerve condition with vitamin E supplementation in type 2 diabetes. Diabetes Care 1998;21:1915–8.

157. Ross WM, Creighton MO, Stewart-DeHaan PJ, et al. Modelling cortical cataractogenesis: 3. In vivo effects of vitamin E on cataractogenesis in diabetic rats. Can J Ophthalmol 1982;17:61.

158. Bursell SE, Schlossman DK, Clermont AC, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatinine clearance in patients with type I diabetes. Diabetes Care 1999;22:1245–51.

159. Ceriello A, Giugliano D, Quatraro A, et al. Vitamin E reduction of protein glycosylation in diabetes. Diabetes Care 1991;14:68–72.

160. Duntas L, Kemmer TP, Vorberg B, Scherbaum W. Administration of d-alpha-tocopherol in patients with insulin-dependent diabetes mellitus. Curr Ther Res 1996;57:682–90.

161. Paolisso G, D’Amore A, Galzerano D, et al. Daily vitamin E supplements improve metabolic control but not insulin secretion in elderly type II diabetic patients. Diabetes Care 1993;16:1433–7.

162. Jain SK, McVie R, Jaramillo JJ, et al. Effect of modest vitamin E supplementation on blood glycated hemoglobin and triglyceride levels and red cell indices in type I diabetic patients. J Am Coll Nutr 1996;15:458–61.

163. Jain SK, McVie R, Smith T. Vitamin E supplementation restores glutathione and malondialdehyde to normal concentrations in erythrocytes of type 1 diabetic children. Diabetes Care 2000;23:1389–94.

164. Reaven PD, Barnett J, Herold DA, Edelman S. Effect of vitamin E on susceptibility of low-density lipoprotein and low-density lipoprotein subfractions to oxidation and on protein glycation in NIDDM. Diabetes Care 1995;18:807.

165. Bursell S-E, Schlossman DK, Clermont AC, et al. High-dose vitamin E supplementation normalizes retinal blood flow and creatineine clearance in patients with type I diabetes. Diabetes Care 1999;22:1245–51.

166. Fuller CJ, Chandalia M, Garg A, et al. RRR-alpha-tocopheryl acetate supplementation at pharmacologic doses decreases low-density-lipoprotein oxidative susceptibility but not protein glycation in patients with diabetes mellitus. Am J Clin Nutr 1996;63:753–9.

167. Skrha J, Sindelka G, Kvasnicka J, Hilgertova J. Insulin action and fibrinolysis influenced by vitamin E in obese type 2 diabetes mellitus. Diabetes Res Clin Pract 1999;44:27–33.

168. Lepp?l? JM, Virtamo J, Fogelholm R, et al. Vitamin E and beta carotene supplementation in high risk for stroke: A subgroup analysis of the alpha-tocopherol, beta-carotene cancer prevention study. Arch Neurol 2000;57:1503–9.

169. Cunningham JJ, Ellis SL, McVeigh KL, et al. Reduced mononuclear leukocyte ascorbic acid content in adults with insulin-dependent diabetes mellitus consuming adequate dietary vitamin C. Metabolism 1991;40:146–9.

170. Davie SJ, Gould BJ, Yudkin JS. Effect of vitamin C on glycosylation of proteins. Diabetes 1992;41:167–73.

171. Will JC, Tyers T. Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev 1996;54:193–202 [review].

172. Eriksson J, Kohvakka A. Magnesium and ascorbic acid supplementation in diabetes mellitus. Ann Nutr Metab 1995;39:217–23.

173. Paolisso G, Balbi V, Volpe C, et al. Metabolic benefits deriving from chronic vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr 1995;14:387–92.

174. Will JC, Tyers T. Does diabetes mellitus increase the requirement for vitamin C? Nutr Rev 1996;54:193–202 [review].

175. McAuliffe AV, Brooks BA, Fisher EJ, et al. Administration of ascorbic acid and an aldose reductase inhibitor (tolrestat) in diabetes: effect on urinary albumin excretion. Nephron 1998;80:277–84.

176. Branch DR. High-dose vitamin C supplementation increases plasma glucose. Diabetes Care 1999;22:1218 [letter].

177. Mayer-Davis E, Bell RA, Reboussin BA, et al. Antioxidant nutrient intake and diabetic retinopathy. The San Luis Valley Diabetes Study. Ophthalmology 1998;105:2264–70.

178. Wilson RG, Davis RE. Serum pyridoxal concentrations in children with diabetes mellitus. Pathology 1977;9:95–9.

179. Davis RE, Calder JS, Curnow DH. Serum pyridoxal and folate concentrations in diabetics. Pathology 1976;8:151–6.

180. McCann VJ, Davis RE. Serum pyridoxal concentrations in patients with diabetic neuropathy. Aust N Z J Med 1978;8:259–61.

181. Spellacy WN, Buhi WC, Birk SA. Vitamin B6 treatment of gestational diabetes mellitus. Am J Obstet Gynecol 1977;127:599–602.

182. Coelingh HJT, Schreurs WHP. Improvement of oral glucose tolerance in gestational diabetes by pyridoxine. BMJ 1975;3:13–5.

183. Spellacy WN, Buhi WC, Birk SA. The effects of vitamin B6 on carbohydrate metabolism in women taking steroid contraceptives: preliminary report. Contraception 1972;6:265–73.

184. Passariello N, Fici F, Giugliano D, et al. Effects of pyridoxine alpha-ketoglutarate on blood glucose and lactate in type I and II diabetics. Int J Clin Pharmacol Ther Toxicol 1983;21:252–6.

185. Solomon LR, Cohen K. Erythrocyte O2 transport and metabolism and effects of vitamin B6 therapy in type II diabetes mellitus. Diabetes 1989;38:881–6.

186. Rao RH, Vigg BL, Rao KSJ. Failure of pyridoxine to improve glucose tolerance in diabetics. J Clin Endocrinol Metab 1980;50:198–200.

187. Coggeshall JC, Heggers JP, Robson MC, Baker H. Biotin status and plasma glucose in diabetics. Ann NY Acad Sci 1985;447:389–92.

188. Maebashi M, Makino Y, Furukawa Y, et al. Therapeutic evaluation of the effect of biotin on hyperglycemia in patients with non-insulin dependent diabetes mellitus. J Clin Biochem Nutr 1993;14:211–8.

189. Koutsikos D, Agroyannis B, Tzanatos-Exarchou H. Biotin for diabetic peripheral neuropathy. Biomed Pharmacother 1990;44:511–4.

190. Haugen HN. The blood concentration of thiamine in diabetes. Scand J Clin Lab Invest 1964;16:260–6.

191. Vorhaus MG, Williams RR, Waterman RE. Studies on crystalline vitamin B1: observations in diabetes. Am J Dig Dis 1935;2:541–57.

192. Abbas ZG, Swai ABM. Evaluation of the efficacy of thiamine and pyridoxine in the treatment of symptomatic diabetic peripheral neuropathy. East African Med J 1997;74:804–8.

193. Stracke H, Lindemann A, Federlin K. A benfotiamine-vitamin B combination in treatment of diabetic polyneuropathy. Exp Clin Endocrinol Diabetes 1996;104:311–6.

194. Miyake Y, Shouzu A, Nishikawa M, et al. Effect of treatment of 3-hydroxy-3-methylglutaryl coenzyme I reductase inhibitors on serum coenzyme Q10 in diabetic patients. Arzneimittelforschung 1999;49:324–9.

195. Shigeta Y, Izumi K, Abe H. Effect of coenzyme Q7 treatment on blood sugar and ketone bodies of diabetics. J Vitaminol (Kyoto) 1966;12:293–8.

196. Henriksen JE, Bruun Andersen C, Hother-Nielsen O, et al. Impact of ubiquinone (coenzyme Q10) treatment on glycaemic control, insulin requirement and well-being in patients with Type 1 diabetes mellitus. Diabet Med 1999;16:312–8.

197. Abdel-Aziz MT, Abdou MS, Soliman K, et al. Effect of carnitine on blood lipid pattern in diabetic patients. Nutr Rep Int 1984;29:1071–9.

198. Onofrj M, Fulgente T, Mechionda D, et al. L-acetylcarnitine as a new therapeutic approach for peripheral neuropathies with pain. Int J Clin Pharmacol Res 1995;15:9–15.

199. Yamane K, Usui T, Yamamoto T, et al. Clinical efficacy of intravenous plus oral mecobalamin in patients with peripheral neuropathy using vibration perception thresholds as an indicator of improvement. Curr Ther Res 1995;56:656–70 [review].

200. Kuwabara S, Nakazawa R, Azuma N, et al. Intravenous methylcobalamin treatment for uremic and diabetic neuropathy in chronic hemodialysis patients. Intern Med 1999;38:472–5.

201. Molnar GD, Berge KG, Rosevear JW, et al. The effect of nicotinic acid in diabetes mellitus. Metabolism 1964;13:181–9.

202. Gaut ZN, Pocelinko R, Solomon HM, Thomas GB. Oral glucose tolerance, plasma insulin, and uric acid excretion in man during chronic administration in nicotinic acid. Metabolism 1971;20:1031–5.

203. Clearly JP. The importance of oxidant injury as a cause of impaired mitochondrial oxidation in diabetes. J Orthomolec Med 1988;3:164–74.

204. Clearly JP. Vitamin B3 in the treatment of diabetes mellitus: case reports and review of the literature. J Nutr Med 1990;1:217–25.

205. Lewis CM, Canafax DM, Sprafka JM, Bazrbosa JJ. Double-blind randomized trail of nicotinamide on early-onset diabetes. Diabetes Care 1992;15:121–3.

206. Chase HP, Butler-Simon N, Garg S, et al. A trial of nicotinamide in newly diagnosed patients with type 1 (insulin-dependent) diabetes mellitus. Diabetologia 1990;33:444–6.

207. Mendola G, Casamitjana R, Gomis R. Effect of nicotinamide therapy upon B-cell function in newly diagnosed type 1 (insulin-dependent) diabetic patients. Diabetologia 1989;32:160–2.

208. Pozzilli P, Browne PD, Kolb H. Meta-analysis of nicotinamide treatment in patients with recent-onset type 1. The nicotinamide trialists. Diabetes Care 1996;19:1357–63.

209. Vidal J, Fernandez-Balsells M, Sesmilo G, Aguilera E. Effects of nicotinamide and intravenous insulin therapy in newly diagnosed type 1 diabetes. Diabetes Care 2000;23:360–4.

210. Elliott RB, Picher CC, Fergusson DM, Stewart AW. A population based strategy to prevent insulin-dependent diabetes using nicotinamide. J Pediatr Endocrinol Metab 1996;9:501–9.

211. Lampeter EF, Klinghammer A, Scherbaum WA, et al. The Deutsche Nicotinamide Intervention Study. An attempt to prevent type 1 diabetes. Diabetes 1998;47:980–4.

212. Visalli N, Cavallo MG, Signore A, et al. A multi-centre randomized trial of two different doses of nicotinamide in patients with recent-onset type 1 diabetes (The IMDIAB VI). Diabetes Metab Res Rev 1999;15:181–5.

213. Nakamura T, Higashi A, Nishiyama S, et al. Kinetics of zinc status in children with IDDM. Diabetes Care 1991;14:553–7.

214. Mocchegiani E, Boemi M, Fumelli P, Fabris N. Zinc-dependent low thymic hormone level in type I diabetes. Diabetes 1989;12:932–7.

215. Rao KVR, Seshiah V, Kumar TV. Effect of zinc sulfate therapy on control and lipids in type I diabetes. J Assoc Physicians India 1987;35:52 [abstract].

216. Niewoehner CB, Allen JI, Boosalis M, et al. Role of zinc supplementation in type II diabetes mellitus. Am J Med 1986;81:63–8.

217. Pidduck HG, Wren PJ, Evans DA. Hyperzincuria of diabetes mellitus and possible genetic implications of this observation. Diabetes 1970;19:240–7.

218. Cunningham JJ, Fu A, Mearkle PL, Brown RG. Hyperzincuria in individuals with insulin-dependent diabetes mellitus: concurrent zinc status and the effect of high-dose zinc supplementation. Metabolism 1994;43:1558–62.

219. Labriji-Mestaghanmi H, Billaudel B, Garnier PE, Sutter BCJ. Vitamin D and pancreatic islet function. I. Time course for changes in insulin secretion and content during vitamin deprivation and repletion. J Endocrine Invest 1988;11:577–84.

220. Boucher BJ. Inadequate vitamin D status: does it contribute to the disorders comprising syndrome ‘X’? Br J Nutr 1998;79:315–27 [review].

221. Salway JG, Whitehead L, Finnegan JA, et al. Effect of myo-inositol on peripheral-nerve function in diabetes. Lancet 1978;2:1282–4.

222. Franconi F, Bennardini F, Mattana A, et al. Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 1995;61:1115–9.

223. Nakamura T, Ushiyama C, Suzuki S, et al. Effects of taurine and vitamin E on microalbuminuria, plasma metalloproteinase-9, and serum type IV collagen concentrations in patients with diabetic nephropathy. Nephron 1999;83:361–2.

224. Zak A, Zeman M, Hrabak P, et al. Changes in the glucose tolerance and insulin secretion in hypertriglyceridemia: effects of dietary n-3 fatty acids. Nutr Rep Int 1989;39:235–42.

225. Popp-Snijders C, Schouten JA, Heine RJ, et al. Dietary supplementation of omega-3 polyunsaturated fatty acids improves insulin sensitivity in non-insulin-dependent diabetes. Diabetes Res 1987;4:141–7.

226. Albrink MJ, Ullrich IH, Blehschmidt NG, et al. The beneficial effect of fish oil supplements on serum lipids and clotting function of patients with type II diabetes mellitus. Diabetes 1986;35 (suppl 1):43A [abstract #172].

227. Wei I, Ulchaker M, Sheehan J. Effect of omega-3 fatty acids (FA) in non-obese non-insulin dependent diabetes (NIDDM). Am Clin Nutr 1988;47:775 [abstract #70].

228. Vandongen R, Mori TA, Codde JP, et al. Hypercholesterolaemic effect of fish oil in insulin-dependent diabetic patients. Med J Aust 1988;148:141–3.

229. Schectman G, Kaul S, Kissebah AH. Effect of fish oil concentrate on lipoprotein composition in NIDDM. Diabetes 1988;37:1567–73.

230. Stackpoole PW, Alig J, Kilgore LL, et al. Lipodystrophic diabetes mellitus. Investigations of lipoprotein metabolism and the effects of omega-3 fatty acid administration in two patients. Metabolism 1988;37:944–51.

231. Glauber H, Wallace P, Griver K, Brechtel G. Adverse metabolic effect of omega-3 fatty acids in non-insulin-dependent diabetes mellitus. Ann Intern Med 1988;108:663–8.

232. Okuda Y, Mizutani M, Ogawa M, et al. Long-term effects of eicosapentaenoic acid on diabetic peripheral neuropathy and serum lipids in patients with type II diabetes mellitus. J Diabetes Complications 1996;10:280–7.

233. Gaby A. Preventing complications of diabetes Townsend Letter 1985;32:307 [editorial].

234. Halberstam M, Cohen N, Schlimovich P, et al. Oral vanadyl sulfate improves insulin sensitivity in NIDDM but not in obese nondiabetic subjects. Diabetes 1996;45:659–66.

235. Boden G, Chen X, Ruiz J, et al. Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin dependent diabetes mellitus. Metabolism 1996;45:1130–5.

236. Goldfine AB, Patti ME, Zuberi L, et al. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: in vivo and in vitro studies. Metabolism 2000;49:400–10.

237. Aharon Y, Mevorach M, Shamoon H. Vanadyl sulfate does not enhance insulin action in patients with type 1 diabetes. Diabetes Care 1998;21:2194 [letter].

238. Goldfine AB, Patti ME, Zuberi L, et al. Metabolic effects of vanadyl sulfate in humans with non-insulin-dependent diabetes mellitus: In vivo and in vitro studies. Metabolism 2000;49:400–10.

239. Yamashita K, Kawai K, Itakura M. Effect of fructo-oligosaccharides on blood glucose and serum lipids in diabetic subjects. Nutr Res 1984;4:961–6.

240. Roberfroid M. Dietary fibre, inulin and oligofructose. A review comparing their physiological effects. Crit Rev Food Sci Nutr 1993;33:103–48 [review].

241. van Dokkum W, Wezendonk B, Srikumar TS, van den Heuvel. Effect of nondigestible oligosaccharides on large-bowel functions, blood lipid concentrations and glucose absorption in young healthy male subjects. Eur J Clin Nutr 1999;53:1–7.

242. Luo J, Rizkalla SW, Alamowitch C, et al. Chronic consumption of short-chain fructooligosaccharides by health subjects decreased basal hepatic glucose production but had no effect on insulin-stimulated glucose metabolism. Am J Clin Nutr 1996;63:939–45.

243. Kosenko LG. Concentration of trace elements in the blood of patients with diabetes mellitus. Fed Proc Transl (Suppl) 1965;24:237–8.

244. Baly DL, Schneiderman JS, Garcia-Welsh AL. Effect of manganese deficiency on insulin binding, glucose transport and metabolism in rat adipocytes. J Nutr 1990;120:1075–9.

245. Rubenstein AH, Levin NW, Elliott GA. Hypoglycaemia induced by manganese. Nature (London) 1962;194:188–9.

246. Eckel RH, Hanson AS, Chen AY, et al. Dietary substitution of medium-chain triglycerides improves insulin-mediated glucose metabolism in non-insulin dependent diabetics. Diabetes 1992;41:641–7.

247. Trudy J, Yost RN, Erskine JM, et al. Dietary substitution of medium-chain triglycerides in subjects with non-insulin dependent diabetes mellitus in an ambulatory setting: impact on glycemic control and insulin-mediated glucose metabolism. J Am Coll Nutr 1994;13:615–22.

248. Boivin M, Zinsmeister AR, Go VL, DiMagno EP. Effect of a purified amylase inhibitor on carbohydrate metabolism after a mixed meal in healthy humans. Mayo Clin Proc 1987;62:249–55.

249. Boivin M, Flourie B, Rizza RA, et al. Gastrointestinal and metabolic effects of amylase inhibition in diabetics. Gastroenterology 1988;94:387–94.

250. Lankisch M, Layer P, Rizza RA, DiMagno EP. Acute postprandial gastrointestinal and metabolic effects of wheat amylase inhibitor (WAI) in normal, obese, and diabetic humans. Pancreas 1998;17:176–81.

251. Holt PR, Thea D, Yang MY, Kotler DP. Intestinal and metabolic responses to an alpha-glucosidase inhibitor in normal volunteers. Metabolism 1988;37:1163–70.

252. Layer P, Rizza RA, Zinsmeister AR, et al. Effect of a purified amylase inhibitor on carbohydrate tolerance in normal subjects and patients with diabetes mellitus. Mayo Clin Proc 1986;61:442–7.

253. [No authors listed.] Treatment of painful diabetic neuropathy with topical capsaicin. A multicenter, double-blind, vehicle-controlled study. The Capsaicin Study Group. Arch Intern Med 1991;151:2225–9.

254. [No authors listed.] Effect of treatment with capsaicin on daily activities of patients with painful diabetic neuropathy. Capsaicin Study Group. Diabetes Care 1992;15:159–65.

255. Anderson JW, Allgood LD, Turner J, et al. Effects of psyllium on glucose and serum lipid responses in men with type 2 diabetes and hypercholesterolemia. Am J Clin Nutr 1999;70:466–73.

256. Zhang T, Hoshino M, Iguchi K, et al. Ginseng root: Evidence for numerous regulatory peptides and insulinotropic activity. Biomed Res 1990;11:49–54.

257. Suzuki Y, Hikino H. Mechanisms of hypoglycemic activity of panaxans A and B, glycans of Panax ginseng roots: Effects on plasma levels, secretion, sensitivity and binding of insulin in mice. Phytother Res 1989;3:20–4.

258. Waki I, Kyo H, Yasuda M, Kimura M. Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals. J Pharm Dyn 1982;5:547–54.125.

259. Sotaniemi EA, Haapakoski E, Rautio A. Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 1995;18:1373–5.

260. Vuksan V, Sivenpiper JL, Koo VY, et al. American ginseng (Panax quinquefolius L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med 2000;160:1009–13.

261. Vuksan V, Sivenpiper JL, Koo VYY, et al. American ginseng (Panax quinquefolius L.) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus. Arch Intern Med 2000;160:1009–13.

262. Viseshakul D, Premvatana P, Chularojmontri V, et al. Improved glucose tolerance induced by long term dietary supplementation with hairy basal seeds (Ocimum canum Sim) in diabetics. J Med Assoc Thailand 1985;68:408–11.

263. Agrawal P, Rai V, Singh RB. Randomized placebo-controlled, single blind trial of holy basil leaves in patients with noninsulin-dependent diabetes mellitus. Int J Clin Pharmacol Ther 1996;34:406–9.

264. Rai V, Mani UV, Iyer UM. Effect of Ocimum sanctum leaf powder on blood lipoproteins, glycated protein and total amino acids in patients with non-insulin-dependent diabetes mellitus. J Nutr Environ Med 1997;7:113–8.

265. Baskaran K, Ahmath BK, Shanmugasundaram KR, Shanmugasundaram ERB. Antidiabetic effect of a leaf extract from Gymnema sylvestre in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol 1990;30:295–305.

266. Shanmugasundaram ERB, Rajeswari G, Baskaran K, et al. Use of Gymnema sylvestre leaf extract in the control of blood glucose insulin-dependent diabetes mellitus. J Ethnopharmacol 1990;30:281–94.

267. Joffe DJ, Freed SH. Effect of extended release gymnema sylvestre leaf extract (Beta Fast GXR) alone or in combination with oral hypoglycemics or insulin regimens for type 1 and type 2 diabetes. Diabetes In ControlNewsletter 2001;76:no page number.

268. Leatherdale BA, Panesar RK, Singh G, et al. Improvement of glucose tolerance due to Momordica charantia (karela). BMJ 1981;282:1823–4.

269. Srivastava Y, Venkatakrishna-bhatt H, Verma Y, et al. Antidiabetic and adaptogenic properties of Momordica charantia extract: An experimental and clinical evaluation. Phytother Res 1993;7:285–9.

270. Welihinda J, Karunanaya E, Sheriff MHB, Jayasinghe K. Effect of Momordica charantia on the glucose tolerance in maturity onset diabetes. J Ethnopharmacol 1986;17:277–82.

271. Jain RC, Sachdev KN. A note on hypoglycemic action of onion in diabetes. Curr Med Pract 1971;15:901–2.

272. Mathew PT, Augusti KT. Hypoglycaemic effect of onion, Allium cepa Linn, on diabetes mellitus, a preliminary report. Ind J Physiol Pharmacol 1975;19:231–7.

273. Tjokroprawiro A, Pikir BS, Budhiarta AA, et al. Metabolic effects of onion and green beans on diabetic patients. Tohoku J Exp Med 1983;141(suppl):671–6.

274. Sharma KK, Gupta RK, Gupta S, Samuel KC. Antihyperglycemic effect of onion: Effect on fasting blood sugar and induced hyperglycemia in man. Ind J Med Res 1977;65:422–9.

275. Scharrer A, Ober M. Anthocyanoside in der Behandlung von Retinopathien. Klin Monatsblatt Augenheilk 1981;178:386–9.

276. Koltringer P, Langsteger W, Lind P, et al. [Ginkgo biloba extract and folic acid in the therapy of changes caused by autonomic neuropathy]. Acta Med Austriaca 1989;16:35–7 [in German].

277. Gray AM, Flatt PR. Insulin-secreting activity of the traditional antidiabetic plant Viscum album (mistletoe). J Endocrinol 1999;160:409–14.

278. Swanson-Flatt SK, Day C, Bailey CJ, Flatt PR. Evaluation of traditional plant treatments for diabetes: Studies in streptozotocin-diabetic mice. Acta Diabetologica Latina 1989;26:51–5.

279. Peirce A. Practical Guide to Natural Medicines. New York: William Morrow and Co., 1999, 469–71.

280. Van der Hem LG, van der Vliet JA, Bocken CF, et al. Ling Zhi-8: studies of a new immunomodulating agent. Transplantation 1995;60:438–43.

281. Jones K. Reishi mushroom: Ancient medicine in modern times. Alt Compl Ther 1998;4:256–66 [review].

282. Feng M, Li Y, Pang B, et al. Acupuncture combined with application of xiaoke plaster for treatment of 309 cases of diabetes mellitus. J Tradit Chin Med 1997;17:247–9.

283. Chen JF. A hemorrheological study on the effect of acupuncture in treating diabetes mellitus. J Tradit Chin Med 1987;7:95–100.

284. Chen D, Gong D, Zhai Y. Clinical and experimental studies in treating diabetes mellitus by acupuncture. J Tradit Chin Med 1994;14:163–6.

285. Chen JF, Wei J. Changes of plasma insulin level in diabetics treated with acupuncture. J Tradit Chin Med 1985;5:79–84.

286. Abuaisha BB, Costanzi JB, Boulton AJ. Acupuncture for the treatment of chronic painful peripheral diabetic neuropathy: a long-term study. Diabetes Res Clin Pract 1998;39:115–21.

287. Zheg HT, Huang XM, Sun JH. Treatment of diabetic cystopathy by acupuncture and moxibustion. J Tradit Chin Med 1986;6:243–8.

288. Zhang W. Acupuncture for treatment of diabetic urinary bladder neural dysfunction—a report of 36 cases. J Tradit Chin Med 1997;17:211–3.